

Edited by UXQB Working Group “CPUX-DS”

CPUX-DS
Curriculum and Glossary
Version 1.01a EN: 4 June 2021

Published by: UXQB e. V.

Contact: info@uxqb.org

www.uxqb.org

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 2 of 132

Acknowledgments

The editors express their gratitude to the UXQB CPUX-DS working group and to the review-

ers of this and previous versions of the CPUX-DS curriculum, for their constructive contribu-

tions to the technical contents.

Editor: Knut Polkehn; Co-Editor: Daniela Keßner

Contributors and reviewers: Chris Bailey, Kay Behrenbruch, Andreas Bleiker, Holger Fischer,

Stefan Freimark, Thomas Geis, John Goodall, Morten Borup Harning, Rüdiger Heimgärtner,

Oliver Kluge, Corinna Laabs, Rolf Molich, Sandra Murth, Elvi R. Nissen, Michael Richter,

Chris Rourke, Guido Tesch, Norbert Zellhofer

Research & Support: Sina Flohr, Janine Galka, Christiane Geffert, Nils Hofmann, Hannes

Hölzl, Laura Janitz, Lara Mhethawi, Alica Strigl, Alica Thissen, Jennifer Lynn Tune, Kathrin

Wienrank

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 3 of 132

Table of contents
Preliminary notes .. 6

1 Important perspectives for design activities .. 9

1.1 The baseline for Designing Solutions .. 9

1.2 Overview of design activities .. 12

 Early design: conceptual modelling .. 13

 First drafts: information architecture and interaction design 16

 Refined design: interface design, information design, and sensory design 19

1.3 Iterating as needed and as the project demands ... 21

 Iterate design decisions .. 21

 Create alternatives to make a selection .. 21

 Evaluating continuously in a formative way .. 22

 Decide how to iterate in the project .. 24

1.4 Considering the whole user experience across all touchpoints 25

 Reflecting psychological needs .. 25

 Designing aesthetic interaction ... 27

 Considering whole ecosystems .. 27

2 Early design .. 30

2.1 Design of user interfaces for the achievement of goals ... 30

 Task-related operation to achieve user goals ... 30

 User assistance: Explicit action-guiding information in addition to task objects

and executable functions .. 35

 Intended and unintended consequences of user interface design.................... 36

2.2 Design activity: conceptual modelling .. 37

 Creating task models for design ... 37

 Creating interaction specifications based on task models 40

 Identifying task objects, attributes, and executable functions in interaction

specifications .. 45

 Considering dependencies and creating variations .. 48

 Communicating use scenarios to users and stakeholders................................ 50

3 First drafts ... 52

3.1 Design activity: information architecture .. 52

 Development of the information architecture .. 52

 Enhance task objects with signposts .. 54

 Structure task objects by determining connection paths 56

 Make the information architecture visible for evaluation 57

 Create the navigation structure using connection paths and signposts 62

 Evaluate the information architecture ... 66

3.2 Design activity: Interaction design ... 68

 Define task-related interaction sequences .. 68

 Visualise interaction sequences ... 68

 Structure the user interface based on all required views 70

3.3 Make design decisions tangible to get feedback ... 71

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 4 of 132

 Characteristics of visualisations across design phases 71

 Typical types of visualisations .. 72

 Benefits of visualising design decisions early and continuously 76

 Iterating visualisations through evaluation .. 76

 Guidelines for creating low-fidelity prototypes .. 76

 Criteria for selecting prototyping tools .. 77

4 Refined design .. 79

4.1 Design activity: Interface design .. 79

 Create the interface design by selecting, arranging, combining, and defining the

behaviour of user interface elements .. 79

 Appropriate use of user interface elements .. 81

4.2 Design activity: Information design .. 84

 Principles for the presentation of information ... 84

 Information reading and comprehensibility of content 86

 Specific design recommendations for comprehensibility 89

4.3 Design activity: Sensory design ... 91

 Design the user interface regarding its perception through relevant sensory

channels ... 91

 Gestalt laws .. 91

 Colours, font sizes, and white space .. 93

5 Specific human needs ... 95

5.1 Accessibility ... 95

 The importance of accessible design ... 95

 Assistive technologies .. 96

 Laws, standards and guidelines for accessible design 96

5.2 Design ethics ... 98

 Influence by design and ethical consequences .. 98

 Use of nudges as design elements of influence ... 100

 Typical forms of nudges .. 100

 Responsible design by applying common ethical standards 102

5.3 Cultural diversity .. 103

 Intercultural user interface design (IUID) .. 103

 Methods for interculturalisation (IUID process) ... 103

6 Aspects beyond the design activities .. 106

6.1 Managing stakeholders .. 106

 Setting quality objectives for the project ... 106

 Agreement on user feedback .. 108

 Involve stakeholders ... 109

6.2 Setting the frame for design work .. 111

 Deciding on the design process and methods .. 111

 Deciding on appropriate systems of design recommendations to be used 111

6.3 Attending to implicit design tasks ... 118

 Search .. 118

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 5 of 132

 Help and documentation ... 119

6.4 Documenting design decisions .. 120

 The need for documentation ... 120

 Explicit approach .. 121

 Types of documentation of design decisions .. 121

Appendix 1: Overview of the CPUX-DS terms and activities ... 123

Appendix 2: Model Seminar ... 125

Appendix 3: Important changes to this document .. 128

Appendix 4: References & Index .. 129

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 6 of 132

Preliminary notes

This document covers the human-centred design activity, “Design: Produce design solutions

to meet user requirements”, part of “Human-centred design”, as defined in ISO 9241-210:

“Human-centred design for interactive systems”.

Figure 1. The activity “Designing Solutions” shown in the interdependence of human-centred design activities ac-
cording to the ISO 9241-210 standard and related UX Deliverables (deliverables in italics are defined in CPUX-F)

The international standard ISO 9241-210 requires designers to understand the following sub

activities for creating design solutions that meet the user requirements:

a. designing user tasks, user-system interactions, and user interfaces to meet user require-

ments, by considering the entire user experience

b. making design solutions more concrete (for example, creating use scenarios, simulations,

or prototypes)

c. altering design solutions in response to user-centred evaluation and feedback

d. communicating design solutions to those responsible for their implementation.

This document defines what you need to know to attain the certification for “Certified Profes-

sional in Usability and User Experience – Advanced Level Design Solutions (CPUX-DS)”.

The certification process will only cover your knowledge and understanding of the information

and concepts in this document; it will not cover course material from CPUX-F.

The certification process aims to evaluate:

• your knowledge and understanding of the terms and topics in this curriculum

• your ability to apply your knowledge and understanding in practice.

ANALYSIS: UNDERSTAND AND

SPECIFY THE CONTEXT OF USE

SPECIFY THE USER

REQUIREMENTS

PRODUCE DESIGN SOLUTIONS TO MEET USER

REQUIREMENTS

EVALUATE THE DESIGNS

AGAINST USER REQUIREMENTS

UX DELIVERABLES:

• Task models for the design

• Interaction specification and use scenarios,

storyboard, user journey map

• Information architecture: Detailed and

structured task objects and navigation

structure

• Structure of the user interface and

interaction sequences made visible in

sketches, wireframes and wireflows

• Designed views made visible in low-fidelity

and high-fidelity prototypes

• Textual and visual content, labels and

symbols

• Sensorial appearance

• Style guides

PLAN THE HUMAN-CENTRED

DESIGN PROCESS

DESIGN SOLUTION MEETS

USER REQUIREMENTS

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 7 of 132

Who is CPUX-DS for?

CPUX-DS is for anybody involved in designing solutions, including

• usability and user experience professionals, who design interactive systems

• non-usability professionals involved in the design and implementation of interactive sys-

tems – including product managers, product owners, and system developers

• those learning about the field of human-centred design, who may be considering a posi-

tion similar to those described above.

What is the focus of CPUX-DS?

The scope of this curriculum is as follows:

• Fundamental HCD approach vs. Exploring current, popular design methods:

• The curriculum is based on the human-centred design process, a process that needs

to be understood to create human-centred design solutions based on the analysis of

the context of use. A lot of currently discussed methods – including Lean UX and User

Story Mapping – complement the HCD approach, but will not be discussed in this cur-

riculum.

• Pragmatic approach vs. Systematically founded approach:

• The curriculum focusses on a systematically founded approach so that inexperienced

designers will find a basis for their work and experienced designers will know where

and when to skip or adapt methods.

• Hardware vs. Software/digital interfaces:

• The focus of the curriculum is on digital interfaces, which is reflected in the explana-

tions and examples. All the approaches and methods in this curriculum can be applied

to hardware design.

What does the CPUX-DS certification demonstrate?

Holders of the CPUX-DS certificate have demonstrated – through theoretical and practical

examination – that they know, understand, and can apply relevant terms, design techniques,

and methods in the context of human-centred design.

They have demonstrated their ability to

• apply a human-centred approach to producing design solutions

• create and develop interaction specifications and use scenarios to describe how an in-

tended interactive system will be used, based on understanding the context of use and

user requirements

• design information architectures that facilitate efficient access to information and function-

ality

• design navigation structures

• design effective ways of guiding and assisting the user

• specify and design the user interface based on interaction specifications and use scenar-

ios

• design and iterate sketches, wireframes, wireflows, and low-fidelity and high-fidelity proto-

types for evaluation.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 8 of 132

How to read the CPUX-DS curriculum

Each learning unit of the curriculum contains sections that comprise

• a short summary

• learning objective(s) at one or more of the levels, ‘know’, ‘understand’ and ‘be able to’

• learning content for the section, which includes term definitions, explanatory statements,

and examples to support the learning objectives

Terms that are new in a learning unit appear in bold in the summary at the beginning and in

the term definitions of a learning unit. Some sections may include terms from the CPUX-F

glossary. If the definition of a term has been extended beyond its CPUX-F definition, the orig-

inal CPUX-F definition (which will not be included in the certification test) will be clearly

marked.

An example of a term from the CPUX-F Glossary extended in CPUX-DS.

Task model

Task models form the basis for the development of interaction specifications and use

scenarios are identified in the context of use analysis.

CPUX-F Definition

A description of the subtasks within a task that have to be carried out to reach the

user’s goals.

The index at the end of this document contains all glossary terms and their respective page

numbers.

The appendix contains an overview of all learning units and a further reading list that in-

cludes all literature that has been referenced in the curriculum. It also includes a timetable for

a typical training course, which may be used by training providers as a guide when develop-

ing their own seminars.

On UXQB.org you can find an additional document titled “Informative chapters”. This docu-

ment contains three more chapters covering issues that are highly relevant to the work of de-

signers but which are not part of the certification exam. These three chapters describe hu-

man factors, types of interactive systems and user interfaces, and the specifics of managing

design projects.

Preparational training courses

To prepare for the CPUX-DS certification test, we strongly recommend attending a training

course delivered by one of our Recognised Training Providers, although this is not manda-

tory.

The UXQB.org website

All relevant information about CPUX certifications is freely available on UXQB.org – the web-

site of the International Usability and User Experience Qualification Board.

The information on UXQB.org includes

• a complete list of recognised CPUX training providers and available courses

• the examination regulations and the checklist for the practical test

• public example tests (both theoretical and practical)

• informative chapters.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 9 of 132

1 Important perspectives for design activities

Designing Solutions describes the process of implementing the activity, “Design: Produce de-

sign solutions to meet user requirements” in a design project, as described in [ISO 9241-

210]. The approach to designing user tasks, user-system interactions, and user interfaces to

meet user requirements serves as the baseline for the human-centred design process.

The design process includes design activities within the phases of Early design, First drafts,

and Refined design. The curriculum presents a compact and structured overview of the de-

sign activities in Designing Solutions, and every design activity and its sub-activities is ex-

plained in depth in the referenced chapters.

The most appropriate design for an interactive system cannot typically be achieved without

iteration. Designers must decide which iterations are necessary.

Different UX deliverables help to make design solutions more concrete. They also influence

design solutions in response to user-centred evaluation and feedback. Furthermore, these

deliverables help in communicating design solutions to those responsible for their implemen-

tation. All design activities must consider the whole user experience.

1.1 The baseline for Designing Solutions

When designing solutions, the designer must incorporate the information provided by the

context of use analysis to reach a match between the users’ mental models, the de-

signer’s conceptual model, and the system image as the perceivable part of the interactive

system.

Learning Objectives

1.1.a
Know which deliverables from the context of use analysis are the baselines for the

successful completion of design activities.

1.1.b
Know the relationship between users’ mental model, the system image, and the

conceptual model of the designer.

Designing Solutions

A field of action within human-centred design where solutions are designed based on the

results of context of use analysis, to meet user requirements.

Initial ideas are developed (Early design), the user interface is structured in line with the

tasks that need to be supported (First drafts), and, finally, implemented (refined design).

Transferring this work to use scenarios and prototypes enables users to be continuously in-

volved during the iterative design process.

An understanding of the context of use information is important in getting the design right

from the user’s perspective.

Context of use analysis

The process of planning, gathering, and documenting authentic context of use information,

identifying the user needs contained therein, and specifying user requirements.

The designer needs to know the results of the context of use analysis. They are documented

in context of use descriptions; for example, in user group profiles, personas, as-is scenarios,

user journeys, task models, and – for every supported task – user requirements that are

structured along the subtasks. If a designer is aware of the context of use descriptions, they

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 10 of 132

can work on a meaningful user interface from the user’s perspective throughout the design

activities.

A user interface should always be designed in a way that the dialogue requires only minimal

interaction knowledge or explicit training for users. The interaction should be as meaningful

and natural as possible and resemble an interaction experienced in the real world or in famil-

iar contexts. This way, tasks can be completed solely with the help of knowledge from the

user’s world, represented in their mental models.

Mental model

CPUX-F Definition

The perception people have of themselves, others, the environment, and the things with

which they interact.

Humans build mental models from patterns retrieved by replicated experiences about the se-

quence of steps in a workflow, about where to find objects, or how these relate to one an-

other.

The development of appropriate mental models depends on how the designer's conceptual

model is understood and learned during users’ interactions with the system image. For a

meaningful interaction, the designer must create a suitable conceptual model which will be

implemented as the system image. The conceptual model is appropriate if it matches the ex-

pectations of the users, which are based on their mental models.

Conceptual model

The designer’s understanding of how each user’s task should be performed and supported

by the interactive system.

The conceptual model includes task models for the design and for the intended interaction

for each task supported by the interactive system, the required task objects and their rela-

tionships, and the executable functions to create, modify and/or gather information about

task objects as specified by the designer.

To support the user, designers must consider the user’s mental model and build complex in-

teractions aligned with it. The user should be able to easily assimilate the conceptual model

into their mental model. Ideally, the designer’s conceptual model reflect the user’s mental

model and the resulting system image will be a perfect reflection of both.

System image

All parts of an interactive system that are perceivable for the user, including associated in-

formation about the interactive system that is provided to the user before and during usage.

A system image is the representation (visual or non-visual) of the conceptual model of the

designer(s) who created the interactive system. The translation of the conceptual model into

a system image is sometimes flawed. Any mismatch between these three concepts (mental

model, conceptual model, and system image) will inevitably lead to user interfaces that

cause the user to struggle as their mental model is updated.

Example: A new kettle shows a red glow while it is off, and a blue glow once switched on

(system image). This aligns with the designer’s conceptual model where the off-state is

usually represented by red and the on-state by blue. Unfortunately, this conflicts with the

user’s mental model, according to which red indicates hot and blue indicates cold. This

could cause users to burn their fingers when touching the kettle.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 11 of 132

Example: In the early days of online shops, the interaction of purchasing items often

failed to effectively support users, leading to countless aborted shopping processes. As

processes then were not as standardised as today, there were no explicit conventions

about how the ordering process in an online shop should work and what role the shop-

ping cart plays – there was no link between what happened online and what happened in

the real world. The introduction of the shopping cart concept and the strict adherence to

the user’s mental model of a real-life shopping process improved the conversion rates in

online shops significantly.

Innovation sometimes reverses the formation of mental models. This leads to brand new

mental models that change real-world expectations.

Example: Our mental model of cooking with recipes is such that we decide on a recipe

then buy the ingredients. However, some “Smart” applications allow us to input the ingre-

dients we already have, before selecting a recipe from a list of suggestions.

To be at the right starting point in Designing Solutions, designers must ensure that they can

execute design work that is informed by the user's perspective. The design should be carried

out by people intimately familiar with the results of the context of use analysis or in close col-

laboration with people who conducted the research.

It might be seen as suboptimal to let one team analyse the context of use and derive the user

requirements, then hand over the results to another team to do the design, but it is often nec-

essary for larger projects or in companies with dedicated role models.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 12 of 132

1.2 Overview of design activities

When designing solutions, designers make implicit or explicit decisions at different levels, for

example, about the appearance of a user interface element, or about how the user will

achieve their goal in the future, with the help of the interactive system. Every design deci-

sion – whether made consciously or unconsciously – will be reflected in the future system.

This curriculum describes all the design activities and their sub-activities that lead to con-

scious design decisions. In practice, not all of these design activities are applied systemati-

cally and completely. Being aware of them helps the designer to make difficult design deci-

sions consciously, to better reflect on unconsciously made design decisions, and to discuss

them with stakeholders. Design activities are structured in three phases.

In Early design, the designer starts with the first design activity: making design decisions in

conceptual modelling to determine the future interaction between the user and the interac-

tive system.

In First drafts, the designer further develops the conceptual model by considering the infor-

mation architecture and interaction design.

In Refined design, the designer develops the interface design by selecting user interface ele-

ments and defining their behaviour. Information design ensures the information presented

to the user is comprehensible and consistent. The designer also employs aspects of sensory

design to ensure that the user interface can be perceived by all users, regardless of any im-

pairment.

Learning Objectives

1.2.a Understand which design activities are relevant for Designing Solutions.

The designer’s actions and decisions in designing a solution can be summarised in design

activities.

Design activity

A step in the multistep process of Designing Solutions. Each step focuses on specific de-

sign decisions.

This curriculum defines the following design activities for the three design phases:

• Early design: conceptual modelling

• First drafts: information architecture, interaction design

• Refined design: interface design, information design, sensory design

When performing a design activity, the designer manages several sub-activities during which

they make design decisions.

An example of a sub-activity: In interaction design, the designer defines task-related inter-

action sequences, visualises interaction sequences, and structures the user interface and

the required views

In this curriculum, some very systematic procedures and methods are presented explicitly

within all the design activities and their sub-activities.

In reality, time and resources often prevent designers from being able to perform all of these

design activities in-depth, however it is valuable and helpful for designers to understand the

system of design activities and their applicable methods in order to

• make conscious design decisions

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 13 of 132

• carefully reflect alternative design decisions be able to question already (unconsciously)

made design decisions

• be able to adapt the approach to the time and resources available

• communicate design decisions in a way that they can be understood by third parties, for

example, the project team, users, other stakeholders

• discuss design decisions with stakeholders.

Example: A designer works on a project with a tight schedule. Due to limited time, it is

not possible to create task models for the design and interaction specifications in a

detailed and systematic way to identify the task objects, attributes, and executable

functions. Nevertheless, they listen carefully to the user interviews and pay close at-

tention to which objects users work on, to understand the characteristics of those ob-

jects (attributes) that might play a role in the user interface. They consider those ob-

servations when creating wireframes. The latter discussion with the product owner

about the wireframes goes surprisingly well. They understand the designer’s argu-

ments from the user's point of view and why certain objects must already be visible on

the start page.

Design decision

A decision made during the execution of design activities regarding the interaction of the

user with the user interface.

A substantial effort may be required in creating design deliverables that allow for sustainable

design decision making. Each design decision represents a certain rule that the interactions

should follow. The documentation of that decision ensures consistency in design and the re-

use of decisions.

Figure 2 gives an overview of the design process, the design activities, their sub-activities, and

deliverables. The appendix contains an alternative visualisation in Figure 51.

All ot the design activities presented, along with the associated methods are described in the

corresponding chapters of this curriculum. These methods are neither mandatory nor exclu-

sive. In everyday practice, other methods that are suitable to produce design solutions that

satisfy user needs and the needs of other stakeholders may be used.

 Early design: conceptual modelling

In Early design, the designer starts with activities for conceptual modelling by anticipating the

future use of the interactive system.

Conceptual modelling

An activity that determines the task models for design, the interaction specifications, the

task objects and their attributes, and the executable functions, and transforms them into

tangible use scenarios for evaluation with users and other stakeholders.

Conceptual modelling is based on the context of use information. During conceptual model-

ling , dependencies between different tasks are considered and different alternatives are cre-

ated.

Conceptual modelling follows the procedure outlined below.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 14 of 132

Figure 2 Design process in Designing Solutions (Overview of CPUX-DS activities)

REFINED DESIGNEARLY DESIGN

• Create task models for the design,

interaction specifications and use

scenarios

• Identify task objects, their attributes

and executable functions needed per

dialogue step

• Consider dependencies and create

variations

• Make interaction specifications

tangible for communication with users

and stakeholders

FIRST DRAFTS

Conceptual modelling

• Enrich task objects with signposts

• Structure task objects by determining

connection paths

• Make the information architecture

visible for evaluation

• Create the navigation structure

Information architecture

• Define and visualise interaction

sequences, using sketches,

wireframes and wireflows.

• Structure the user interface and its

required views

• Make design tangible with low-fidelity

and high-fidelity prototypes

Interaction design

• Select, arrange, combine, and define

the behaviour of UI elements

• Make design tangible with low-fidelity

and high-fidelity prototypes

Interface design

• Design information comprehensibly

and consistently, e.g. textual and

visual content, labels and symbols

Information design

• Design the UI regarding its perception

for relevant sensory channels

Sensory design

THE BASIS FOR DESIGN

Deliverables from the context of use analysis, e.g. personas, task models and user requirements

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 15 of 132

 Create task models for the design, interaction specifications, and use

scenarios

The designer uses the context of use information to develop ideas for future interactions that

support the user in achieving their goals.

Alternative, optimal approaches to solutions that support users in achieving their goals in the

user-system-interaction can be developed alongside the available task models, as-is-scenar-

ios, story boards, or user journey maps. Any methods and notations to visualise processes,

tell stories, or put oneself in the system’s position are suitable to find good ideas. Different

situations of use can be explored, but edge cases should be avoided.

This process results in task models for the design and interaction specifications for each task

to be supported, which describe the interaction between the user and the system to support

the task at hand as well as possible. These can be converted into narrative use scenarios to

receive feedback from users and other stakeholders.

This sub-activity is covered in detail in 2.2.1 and 2.2.2.

 Identify task objects, their attributes, and executable functions needed per di-

alogue step

Interaction specifications, embedded in the task model for design and the user requirements

as well as use scenarios, help the designer to extract task objects and their attributes, and

identify the functionality needed for the interactive system.

For each supported task, an overview of the required task objects is created, that is, the ob-

jects that the users create, modify, or gather information on when performing tasks. Over-

views of attributes and associated executable functions are created for each task object.

The task models for the design, the interaction specifications for each task, the task objects

and their attributes as well as the executable functions must be checked iteratively for their

completeness, plausibility, and freedom from redundancies.

This sub-activity is covered in detail in 2.2.3.

 Consider dependencies and create variations

While creating task models for design and interaction specifications, the dependencies be-

tween all the tasks that have to be supported by the interactive system must be considered.

Often, these dependencies lead to adjustments of some task models for design.

Creating different variants of interaction specifications for the same task supports the de-

signer in dealing with dependencies and choosing variants that can be transferred into use

scenarios, which can be evaluated by users and other stakeholders.

This sub-activity is covered in detail in 2.2.4.

 Make interaction specifications tangible for communication with users and

stakeholders

The specified interaction can be used to derive use scenarios, storyboards, or user journey

maps in order to evaluate ideas and models with users and other stakeholders. Use scenar-

ios illustrate how users reach their goals step by step when using the interactive system.

Task models, use scenarios, identified task objects, their attributes, and the executable func-

tions serve as an input for subsequent design activities. Use scenarios that can be experi-

enced by stakeholders help to prioritise the value during use from a user’s perspective, in-

stead of solely focusing on business impact, available resources, or technical feasibility.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 16 of 132

This sub-activity is covered in detail in 2.2.5.

 First drafts: information architecture and interaction design

Based on the results of Early design, the designer works out the conceptual model in terms

of the information architecture and a suitable interaction design.

The information architecture describes the labels and the structure within all task objects,

their attributes, and the executable functions so that users can find and understand infor-

mation.

To help the user anticipate the conceptual model of the designer in the system image, the

objects represented in the user's mental model must be represented in the user interface in a

comprehensible and discoverable way.

The information architecture is created by enhancing the task objects with signposts (re-

quired to locate task objects and executable functions), structuring those task objects, mak-

ing this structure visible for evaluation, and creating the navigation structure.

In interaction design, based on the conceptual model and the information architecture, the

interaction sequences are defined, the user interface is structured in required views, and the

design is evaluated using prototypes.

 Enhance task objects with signposts

Enhancing task objects means identifying the signposts by determining the task objects and

executable functions that are related to the task object in focus. This sub-activity aims to pre-

pare the overall structure across all the task objects and create the navigation structure.

Signposts must be titled to match the mental model of the user rather than being based on

the system’s perspective. For example, when naming a signpost to an executable function,

the designer chooses a label from the user’s point of view, such as “reschedule connection”,

instead of using a technical term, such as “update connection information”.

Information architecture

CPUX-F Definition

The naming and structuring of the information that must be accessible to the user.

Based on the conceptual model.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 17 of 132

An example of an enhanced task object:

Table 1 A detailed task object enhanced with signposts

Task object: train connection Details

Attributes Departing station, departing platform, arrival

station, date and time of departure, date, and

time of arrival…

Executable functions

(and the actions they support)

Edit connection

• Select departing station, select arrival sta-

tion, Input departure date…

• Show connection

• …

Signposts to executable functions and

other task objects (calls to action):

Save a connection…

Signposts from other navigational points

(trigger words):

find a connection…

Two different perspectives can be taken on signposts:

• “Calls to action”:

• Signposts from each task object to executable functions; for example, “reschedule

connection” or

• Signposts from each task object to other task objects; for example, “my tickets”

• “Trigger words”:

• Signposts from any other navigation point to the task object; for example, “my next

journey”.

By following the signposts to a task object, users can identify connection paths.

This sub-activity is covered in detail in 3.1.2.

 Structure task objects by determining connection paths

To supply a semantic structure that corresponds to the user’s mental model, the super- and

subordination – the hierarchical relationship – of task objects must be considered (for exam-

ple, products could be part of a shopping cart or product overview). Defining connection

paths using the identified signposts helps to identify the required navigation structure (for ex-

ample, it should be possible to navigate from a product to the detailed product description).

This sub-activity is covered in detail in 3.1.3.

 Make the information architecture visible for evaluation

To evaluate an information architecture, it should be made visible for the internal team, the

users, and other stakeholders.

Different types of presentations offer different perspectives on the created structure within all

task objects, their attributes, and executable functions.

User tasks can be explored in the visualised structure. To check whether the resulting se-

mantic structure of the user interface aligns with user expectations, it can be evaluated with

users, for example, using the card sorting method.

This sub-activity is covered in detail in 3.1.4 and 3.1.6.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 18 of 132

 Create the navigation structure

If the semantic structure of the task objects fits the users’ mental model, the identified sign-

posts are arranged into the navigation structure according to user expectations and require-

ments, by serving as labels for navigation elements within the navigation system. Each entry

of a signpost in a navigation tree or path represents a guide for the user that helps in locating

a task object or an executable function. The prioritisation and selection of entries within the

navigation must be based on the results of the context of use analysis, for example, based

on the prioritisation of user tasks.

For some interactive systems, the navigation structure depends on the delivery channel. For

example, for an application running on a mobile device as well as on a desktop, the mobile

navigation structure may differ from the desktop navigation structure.

The designer selects the appropriate navigation system based on their own professional ex-

perience and on the interactive system to be designed.

The navigation system and the selected navigation elements must be tested with users, for

example, using the tree-testing method. Alternative navigation systems must be tested if the

designer is in any doubt.

This sub-activity is covered in detail in 3.1.5 and 3.1.6.

 Define and visualise interaction sequences with sketches, wireframes, and

wireflows

Information architecture serves as the basis for the interaction. Interaction design defines the

order of stages needed to complete tasks with the interactive system and the required views

from the user’s perspective.

Interaction design

The design activity of structuring the user interface in views, pages / screens as well as de-

termining the interaction sequences.

The designer translates the dialogue steps specified in the interaction specification into a se-

quence of interactions that are represented in one or more views in the user interface. These

interaction sequences need to be logical from the user’s perspective.

The design decisions on the structure of the user interface and its views can be visualised in

sketches, wireframes, wireflows, and low- and high-fidelity-prototypes, to get feedback from

internal team members, users, and other stakeholders.

All the details on these sub-activities can be found in 3.2.1 and 3.2.2.

 Structure the user interface and its required views

The views for all interaction sequences are what define the user interface structure.

An iterative refinement and adaptation of the user interface structure will be necessary, de-

pending on the number and complexity of use scenarios involved. The interaction sequences

specified by the structure of views must be evaluated with users.

This sub-activity is covered in detail in 3.2.3.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 19 of 132

 Make the design tangible with low-fidelity and high-fidelity prototypes

Prototyping solutions helps to identify suitable alternatives and to get feedback from users

and other stakeholders. Some rules need to be considered:

1. Rely as much as possible on the experience embedded in established design patterns, if

they are applicable in the given context of use. The use of established design patterns

must not restrict the scope of any solutions. Sometimes, a problem may require a differ-

ent solution to any offered by existing design patterns.

2. Create as many low-fidelity prototypes as practical (divergence). Each prototype repre-

sents new, tried out aspects of the conceptual model. Failing early and often results in

understanding what users truly need.

3. Evaluate the prototypes with users and other stakeholders to get feedback.

4. Based on the results, come up with new concepts as required and evaluate them.

5. Rule out the concepts with users and other stakeholders based on the results of usability

tests, considering feasibility, practicality, and business impact. Merge concepts that have

proved themselves in tests into the next generation of prototypes (convergence).

6. Create or adopt a style guide covering both syntactic and semantic aspects of design de-

cisions. If applicable, regularly check to make sure prototypes conform to the style guide

and define procedures for enforcing the style guide (governance).

The navigation structure, interaction sequences, required views, and the first prototypes are

often developed in parallel (iteratively).

This sub-activity is covered in detail in 3.3.

 Refined design: interface design, information design, and sensory de-

sign

Refined design is the process of designing every single screen or page in an interactive sys-

tem by using the appropriate user interface elements, designing for comprehensibility and

consistency of all kinds of information, and for user perception.

 Select, arrange, combine and define the behaviour of UI elements

For each individual view and page that has been defined in the interaction design, it must be

determined which interface elements are used and how they are specified.

Interface design

The selection, combination, arrangement, and the definition of the behaviour of user inter-

face elements for all views as required for the interaction between user and user interface.

The user interface elements must be selected according to the user’s expectations and user

requirements so that the users are well supported in achieving their goals.

An example of selecting, arranging, combining, and defining the behaviour of UI ele-

ments: Radio buttons were selected as user interface elements to support a single

choice. They were combined with a field below to show instructions. After changing

the selected radio button, the instruction was exchanged.

This sub-activity is covered in detail in 4.1.1 and 4.1.2.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 20 of 132

 Design meaningful information comprehensibly and consistently

Design all the information in the views to be comprehensible and consistent.

The designer must design all elements containing meaningful information such as textual

and visual content, labels, symbols, or icons considering users' expectations, prior

knowledge, and requirements.

This sub-activity is covered in detail in 4.2.

 Design the UI regarding its perception across relevant sensory channels

The user interface is optimised to ensure it can be perceived by all users via their available

sensory channels.

Perceptibility can be influenced both positively and negatively through all sensory channels.

This sub-activity is covered in detail in 4.3.

Information design

Designing the presentation of meaningful information (text, labels, icons, symbols, etc.) to

support the comprehensibility and interpretability of the contents presented in the task ob-

jects.

Sensory design

Designing the way users perceive the user interface across the available sensory channels.

Sensory channels are also referred to as “modalities” and include visual (seeing), auditory

(hearing), tactile/haptic (touching), olfactory (smelling), and gustatory (tasting).

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 21 of 132

1.3 Iterating as needed and as the project demands

The most appropriate design for an interactive system cannot typically be achieved without

iteration. Designing solutions is an iterative process. This process includes:

• the approach of creating different solution variants and selecting the best alternatives, –

often called Design Darwinism

• validation by questioning already made design decisions through continuous formative

evaluation, which gathers user feedback and involves stakeholders across all design

activities.

For a successful iterative process, designers must make decisions on which work products

are iterated, with whom, when, and how, according to the specific needs of the project.

Learning Objectives

1.3.a Know what it means to iterate.

1.3.b Know what is required to successfully follow the Design Darwinism approach.

1.3.c Know how to find ideas and create variations for iterations.

1.3.d Know how to evaluate design solutions with users or other stakeholders.

1.3.e Know which aspects designers need to decide on to iterate appropriately.

1.3.f Know when iterations can take place during Designing Solutions.

 Iterate design decisions

It is crucial to think broadly and produce a variety of ideas on how users might interact with

the user interface, especially during the Early design phase and while creating the first drafts

of a solution. It is counterproductive to focus on just one or two ideas early in the process.

Moreover, to iterate and include different perspectives, the designer must be open to involv-

ing third parties in the creative process.

Iteration refers to assessing the already-made design decisions as well as any alternative de-

sign decisions from different perspectives (different parties), to select the most promising var-

iants and work on them or revise them as a starting point for the following design activity.

 Create alternatives to make a selection

A good approach to iteration is to create alternatives and select the best of them.

Iterative process

CPUX-F Definition

Repetitive.

An iterative process repeats steps in the human-centred design process until a usability

evaluation of the user interface shows that the user requirements have been adequately met.

Design Darwinism

An approach in which different variants of work products are created in parallel and the best

solution prevails against other solutions through several continuous iterations involving dif-

ferent parties (the internal team, users, and other stakeholders).

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 22 of 132

Design Darwinism can only be successful under certain conditions: Finding the best alterna-

tive to a solution from the users' perspective depends on whether

• the set of possible solution variants includes variants that are valid from the perspective

of the context of use

• the individual variants differ sufficiently from each other to create added value for users

and other stakeholders

• the selection of a variant was fair with the participation of all parties.

To ensure that a variant is appropriate from the perspective of the users and other stakehold-

ers, the designer must validate it.

Creating and selecting variants is a crucial factor in making good design decisions in any de-

sign activity and must be planned into every project. This process can start with the develop-

ment of variants of task models for the design (see chapter 2.2.4).

Example: A designer creates several different variants of task models for the design. In a

workshop, the users and all the other stakeholders are enthusiastic about a particularly

innovative variant of the resulting use scenarios. The designer selects this innovative var-

iant to take forward, develops an information architecture based on it, and creates differ-

ent alternatives of interaction sequences in paper prototypes. After some usability tests,

they realise that there is another very important subtask. They add this subtask to the

task model for design, adapt the information architecture, and create a new prototype.

In the process of creating variants of possible solutions,

• creative methods can be applied to boost creativity and thinking “outside the box”

• team members or stakeholders can be involved to widen the variability of ideas and per-

spectives

• users can be invited to take part in the creative process

• any neutral third party can serve as a sparring partner for discussing and creating ideas.

An initial assessment and clustering of ideas is often done by the people involved in their cre-

ation. The goal is to find a reasonable set of different but equally feasible ideas in terms of

the support of user goals that subsequently should be evaluated with stakeholders, to criti-

cally question them from the point of view of user requirements and stakeholder require-

ments. The best solution will then be detailed in the course of the design process.

 Evaluating continuously in a formative way

In Designing Solutions, formative evaluation can take place on any work product that is cre-

ated during design activities.

The feedback from users based on the formative evaluation of tangible UX deliverables of

each design activity typically results in revising design decisions. It also unveils further details

in the context of use and may lead to updated user requirements.

Validation

A process of determining whether all stakeholder requirements have been effectively imple-

mented from the perspective of all stakeholders.

Formative evaluation

The process through which information about the usability of an interactive system is gath-

ered in order to improve the interactive system.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 23 of 132

According to the mindset of continuous evaluation, the designer must evaluate UX delivera-

bles with users and other stakeholders whenever the opportunity is there. Table 2 gives an

overview of frequently produced UX deliverables.

Table 2: Frequently produced UX deliverables, recipients, and examples of evaluation methods

UX Deliverable Evaluator(s) Evaluation Method

• Use scenario,

• User journey map
Internal Team, Stakeholders,

Users

Informal feedback, Review, Fo-

cus group

• Information architecture Users Informal feedback, Card sorting

• Navigation structure Users Informal feedback, Tree testing

• Sketch Designer, Internal Team Informal feedback

• Wireframe,

• Wireflow
Internal team, Stakeholders,

UX-Professionals, Users

Informal feedback, Review, In-

spection

• Low-fidelity prototype Internal team, Stakeholders,

Users

Informal feedback, Cognitive

walkthrough, Usability test

• High-fidelity prototype,

• Eventual Solution
UX-Professionals, Stake-

holders, Users

Inspection, Review, Interview,

Cognitive walkthrough, Usability

test, User surveys

This approach of continuous evaluation of UX deliverables within Designing Solutions has

several advantages:

• The defects and misunderstandings of scenarios, task models, user requirements, etc.,

can be caught early in the design phase before too much time is invested in unusable de-

signs

• The need for guessing what is most important to users is eliminated by updating the de-

signer with early and continuous feedback from the users and other stakeholders based

on evaluations: for example, a usability test or inspection.

• Many design alternatives can be considered, and the human tendency to commit to one

solution too early and miss out on suitable design alternatives is avoided.

Formative evaluation must be mandated and planned into the design project. From the point

of view of the person initiating the design project, the participation of real users might not

seem important, especially if it is considered time-consuming and costly. Nevertheless, it is

the responsibility of the designer to highlight the importance of user feedback and demand

the involvement of users, to avoid mistaking requests from stakeholders as valid user re-

quirements. Evaluation results must be discussed and agreed upon with stakeholders (see

chapter 6.1.3).

User feedback

The user’s responses on how they perceive the system under development or any work

product that it is represented by. This feedback can result, for example, from a user survey,

a focus group, or a usability test.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 24 of 132

 Decide how to iterate in the project

Regarding iterations, designers have to make different decisions: Which variants of work

products must be iterated? How and with whom will the iteration take place? When will itera-

tion happen?

Not every design project requires all the design activities shown in Figure 2 to be performed

to their full extent. Depending on the needs of the project (How does the product develop-

ment process work? What is the project status? What resources are available?), designers

should carefully choose which activities to perform, to what extent, and which to skip, and

make conscious decisions.

Example: A project team optimises the website of a theatre. A usability test has shown

that the navigation structure fits the user needs, but users cannot interpret the information

on ticket prices correctly. The design team starts to question the design decisions made

in information design and decides to discuss the usability test results in a stakeholder

workshop. Based on the discussions, the designers revise the text and the symbols, and

make conscious decisions about the use of colours, to make the information on ticket

prices more comprehensible. The design team now decides to conduct another round of

usability tests and finds out that two of the variants work equally well. After consultation

with the development team and other stakeholders, they decide to implement one variant.

Regardless of the selected design activities and their order, they should not represent iso-

lated tasks. The work products resulting from each design activity inform subsequent design

activities.

Iterations take place within each individual design activity and also between two design activ-

ities, to ensure that the design decisions satisfy the user needs within the specific context of

use.

Example: While working on first drafts, the designer may conclude that users are better

supported in a different way than the one previously assumed. This leads to the modifica-

tion of use scenarios which have already been agreed upon.

Iterations can even take place at whole-project level. The result of a design project may lead

to the start of a new design project. In this respect, designed solutions can be iterated across

projects.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 25 of 132

1.4 Considering the whole user experience across all touchpoints

To consider the whole user experience, the designer must make design decisions to help us-

ers achieve their goals and tasks, and to fulfil their expectations, considering all aspects of

the context of use for design. This includes the resources used by the user and the environ-

ment(s) they are in while performing tasks. Additionally, they must consider the users’ psy-

chological needs and make decisions about the experiences they want to create by deter-

mining the feelings and emotions they want to provoke in users during the interaction.

All design activities must shape the interaction in the form of the whole user experience.

They should consider aspects of the aesthetics of interaction and users’ psychological

needs.

The interaction between the user and the interactive system does not take place in a vac-

uum. It is embedded in an ecosystem of the use of a large number of other interactive prod-

ucts, systems, or services, in a wide variety of use environments (physical, social, technical),

in which information is exchanged between user and system via different channels.

To consider the whole user experience, the designer must act from the perspective of vari-

ous relevant touchpoints with the interactive product, system, or service. The use of design

thinking methods can be helpful here.

Learning Objectives

1.4.a Understand which aspects are important for the whole user experience.

 Reflecting psychological needs

To create a certain experience for the user, the designer must decide which psychological

needs of the users they want to fulfil. Each psychological need can be supported in a specific

way in interaction design and, thus, serves as a guideline for the identification of user re-

quirements related to user experience. [LeDiHa14] describes the following psychological

needs.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 26 of 132

Table 3 Psychological needs

Psychological

Need
Description

Autonomy

Feeling that you are the cause of your own actions rather than feeling

that external forces or pressures are the cause of your action.

For example, deciding to leave the office as planned instead of waiting

for an update to finish.

Competence

Feeling that you are very capable and effective in your actions rather

than feeling incompetent or ineffective.

For example, being able to use known shortcuts to perform a task in

one step instead of following a multi-step wizard to do the same.

Relatedness

Feeling that you have regular and intimate contact with the people who

care about you rather than feeling lonely and uncared for.

For example, being able to see that colleagues start their work in the

morning, even if they are not in the same office.

Popularity

Feeling that you are liked, respected, and have an influence over oth-

ers rather than feeling like a person whose advice or opinion nobody is

interested in.

For example, being able to see that colleagues frequently use a docu-

ment that you worked on for a long time.

Stimulation

Feeling that you get plenty of enjoyment and pleasure rather than feel-

ing bored and under stimulated.

For example, a visual representation of a growing tree symbolises the

progress of your work. An unbalanced treetop signals missing content;

the colour of the leaves, their relevance.

Security

Feeling safe and in control of your life rather than feeling uncertain and

threatened by your circumstances.

For example, knowing that all necessary steps related to specific de-

mands have been taken instead of being nervous while waiting for

feedback.

Meaning

Feeling that you are developing in line with your potential and making

life meaningful rather than feeling stagnant, and that life does not have

much meaning.

For example, if a website donates to reforestation with money col-

lected through searches, the user immediately sees how many trees

will be planted thanks to their search activity, or the activity of others.

When considering individual psychological needs while designing the user experience, the

designer should not only consider these needs in the context of use descriptions – for exam-

ple, personas or as-is scenarios – but also consider them in each formative evaluation.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 27 of 132

 Designing aesthetic interaction

In addition to the appearance and the look and feel of the designed user interface, the inter-

action itself can be subject to the user’s experience of aesthetics.

Aesthetics of interaction

Results from the harmony between the execution of actions by the user and the intended

experience during the interaction.

The aesthetics of interaction are based on the interplay of an aesthetic form, the design deci-

sions for an interaction that fits the intended experience, and the technology that makes this

interaction possible.

To achieve an intended experience, the designer has to consciously differentiate between

certain attributes of the interaction (for example, slow, mediated, delayed) and the emerging

experience (for example, a positive and meaningful moment). Creating a particular experi-

ence requires awareness and the purposeful combination of attributes at interaction level.

Example: The iPod’s scroll wheel enables users to scroll up and down their long song

lists. This kind of interaction is perceived as smooth and easy because the finger can go

around continuously and doesn’t have to return to the top of the screen.

The designer can influence the aesthetics of the interaction by specifically adapting certain

properties of the interaction, including

• temporal: the duration of the interaction, the sequence of interaction steps

• spatial: the use of space, the spatial distribution of elements, the direction of interaction

• action-reaction: the relation of action and reaction, feedback, response

• presentation: the way information is presented and the possibilities for interaction

• force: the force necessary to interact, the application of force that characterises the inter-

action.

Example: A very fast system response generates a feeling of efficiency and has an

activating effect. A slow system response, on the other hand, can create a feeling of

calm and significance of the moment/product. Slow system response can also create

a feeling of frustration, depending on the context of use.

Since the aesthetics of interaction lead to an emotional experience with regards to a person's

subjective requirements, this aspect has a particular effect on the user experience and can

exert an influence – positive or negative – upon it. An experience of a well-being-oriented de-

sign that aims to set meaningful moments in everyday life is, therefore, very important

[LeDiHa2014].

 Considering whole ecosystems

The interaction between the user and the interactive system is often embedded in an ecosys-

tem of multiple interactive products, systems, or services or a wide variety of use contexts.

Information is often exchanged via in parallel or different channels; for example, websites,

emails, desktop software, mobile apps, or loudspeakers with voice input.

Addressing the whole user experience, the designer must consider all relevant touchpoints to

the interactive system including other interactive products, systems, or services.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 28 of 132

Touchpoint

Any point of contact enabling interaction with the interactive system or the supplier of the

interactive system across various channels (for example, website, product flyer, mobile app,

PC software, telephone…) during the entire product life cycle (from the very first interaction

to the last contact with the interactive system and/or its supplier).

Example: Imagine a user of an online shop, which the user discovers through a price

comparison website (touchpoint) on their mobile phone. They call the shop using the

browser on their computer (touchpoint) to make a purchase. To their surprise, the page

looks different from their previous visit (touchpoint). They stop their purchase and save

their shopping cart because they want to speak with their friends about the product. Their

friends have only heard good things (touchpoint). So, the user returns to their mobile

phone and completes the purchase. Two days later, they receive a confirmation of deliv-

ery (touchpoint).

To observe the relevant contexts of use, interactive systems, or channels, the designer

needs to leave the narrow perspective on the current product which they are working on and

think more outside the box. Using the design thinking approach can be helpful for this.

Design thinking

A systematic approach to solution finding for complex problems of all areas of life, focussing

on human values before considering technological or business constraints. It is a tool to

tackle the unknown and is as such used to create products, services, or process innova-

tions.

The process includes the following phases: ethnographic research, the definition of the prob-

lem, ideation and generation of ideas and solutions, rapid prototyping, test and enhancement

of prototypes, and testing of solutions with the people the design has been created for.

A variant is the design sprint, which is a 5-day, design-thinking project [Knap2016].

The design-thinking approach and the human-centred design process share the following

basic principles and ideas. Both approaches

• focus strictly on humans and their needs, and emphasise not relying on the designer’s

own experiences as the source for possible solutions but to understand people’s hidden

needs through research

• require analysis of the initial situation and use the same or similar methods (personas,

observations, interviews)

• recommend doing design work in interdisciplinary teams

• emphasise the importance of iterations and describe an iterative procedure

• make ideas and possible solutions tangible in work products, for example, prototypes

• evaluate work products with users and use feedback from all stakeholders to improve so-

lutions

On the other hand, both approaches differ in certain relevant aspects:

• The type of problems the approach is applied to:

Human-centred design addresses problems related to the use of interactive systems,

whereas design-thinking addresses all kinds of fundamental human problems (social,

economic, technical…).

• The realm of possible solutions:

Human-centred design is about enhancing or creating the usability, accessibility, and

user experience of a digital product, interface or service, whereas design-thinking may

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 29 of 132

provide innovative and creative services, policies, or processes in the analogue or digital

world.

• The role of innovation:

Design-thinking often focuses on innovations and new product ideas, whereas human-

centred design projects aim at improvements or extensions of existing products as well

• The inclusion of an implementation phase:

Human-centred design considers the implementation of the designed solution and the

evaluation of the final product, whereas the design thinking process ends with the crea-

tion of prototypes.

• Standard as a basis:

Human-centred design is based on published standards, and its procedures are well-de-

fined, well-ordered and well-controlled, whereas design-thinking loosely describes the

principles, methods, and techniques that support the focused but creative chaos of de-

sign work.

Despite all differences, possible synergies arise from the introduction of design-thinking into

human-centred design. Ideation methods can help the creation of creative solutions, which is

helpful in design projects that aim at innovation, especially in the early phases of a human-

centred design project.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 30 of 132

2 Early design

This design phase aims to transform the deliverables from the context of use analysis into a

specification for future interaction. Here, the designer ensures that appropriate functionality is

available and can easily be found by users, and determines how to guide users implicitly and

explicitly to achieve their goal.

Early design includes design activity conceptual modelling, where the task models for the de-

sign are developed, from which interaction specifications can be derived. Based on these in-

teraction specifications, the task objects, their attributes, and executable functions are identi-

fied. Use scenarios, story boards, and user journey maps make the intended interaction tan-

gible.

Early design builds a solid basis for creating the first sketches of the new system.

2.1 Design of user interfaces for the achievement of goals

To achieve a goal (intended outcome), the user creates, modifies, or gathers information

about the task objects. For this purpose, executable functions are provided by the interac-

tive system. Signposts are used to make executable functions and task objects accessible

to the user.

To complete all tasks necessary to achieve a goal (intended outcome), users perform ac-

tions on the user interface.

To ensure users can perform task-related operations with the interactive system, the user

interface must include

• task objects with their attributes

• executable functions to create and/or modify task objects and/or gather information about

task objects from different perspectives

• signposts for locating task objects and executable functions.

On top of a regular task-related operation, explicit user assistance, which includes (various

forms of) system-initiated guidance, online help, and user documentation should be available

in the user interface. During each design activity and across all touchpoints, designers must

be aware that designing the user interface not only leads to intended user behaviour but can

also lead to undesirable behaviour.

Learning Objectives

2.1.a
Understand the relationship between tasks, task objects, executable functions, ac-

tions, signposts, task-related operation, and user assistance.

2.1.b Understand the consequences of intended and undesirable user behaviour result-

ing from the user interface design.

 Task-related operation to achieve user goals

 Create, modify, and gather information about task objects

To achieve their goals, users create and/or modify task objects and/or gather information

about the task objects while interacting with the system [StJW2005] [Wood2007].

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 31 of 132

Task object

An object and its attributes presented in the user interface are required during the comple-

tion of one or more tasks with the interactive system. The attributes can be derived directly

by analysing the user requirements and/or by the dialogue steps (user actions and system

reactions) within an interaction specification.

Examples for attributes of the task object “boarding pass”: flight number, destination, gate

number, and seat number.

An example of creating, modifying, and gathering information about task objects:

• Create: the task object “boarding pass” is created by the user checking in for the flight.

• Modify: the task object “boarding pass” is modified by the user changing the seat

number.

• Gather information: the user gathers information about the task object “boarding pass”

by reading the information on it (for example, delayed flight time, changed gate num-

ber, seat number).

To create, modify, and gather information about task objects, user interfaces provide execut-

able functions.

Executable function

A means in the user interface that allows users to create a task object, modify a task object,

or gather specific information contained in a task object.

Users can easily access the executable functions via the design of signposts.

An example of an executable function: Add boarding pass to passbook, print boarding

pass, save boarding pass as PDF file.

To make executable functions and task objects accessible to the user, the designer specifies

signposts to the task objects.

Signpost

A hint – often realised as a navigation element – that supports the user in finding a particu-

lar task object or an executable function in the interactive system.

Example: A navigation menu can be characterised as a collection of signposts.

Task objects are described by a title (for example, “boarding pass”), the attributes that pro-

vide the required information about the task object, and the signposts to executable functions

or other task objects (for example, “flight”).

An example illustrating the relationship of executable functions, task object, their attrib-

utes, and signposts:

For the task “reduce the size of a file”, the user needs to modify the task object “file” using

the executable function “compress”, which allows users to specify a target location (action

1), and then save the reduced file at the target location (action 2). Another task-related

action on the file might be “Increase the size of a (reduced) file”, which leads to the exe-

cutable function “uncompress”.

To use executable functions on the task object (for example, “compress file”, “uncom-

press file”) or to get information about the task object (for example, “find out how big the

file is”), the task object needs to be represented in the user interface with its attributes (for

example, file name, file type, file size). After having selected a file, a context menu – ac-

cessible through a right-mouse click – might offer signposts to the executable functions

“compress” and “uncompress”.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 32 of 132

When designing task objects and their attributes in the user interface, the designer should

consider their knowledge about task objects that the user has built up from their known

world. Nowadays, mental models are not only acquired in the analogue world but also from

experience in the digital world.

The user’s mental model is the basis for representing the relevant task objects in the user in-

terface and the required executable functions on each task object. The designer should use

metaphors that help the user identify the task object in order to complete the task and offer

actions that support the user in carrying out the necessary dialogue steps.

Example of task objects and actions in the analogue and digital world:

Task objects in the analogue world: Customers visit a bookstore. Displays and book-

shelves provide an overview of all books. You can choose a book and take a closer look

at it.

Task objects in the digital world: Customers visit an online shop (bookstore). Overview

pages give an overview of all books (displays and bookshelves). You can get a detailed

view of a selected product (book) with more information about it.

Actions in the analogue world: In the bookstore, I pick up a book, flip through it, and take

it to the checkout to buy it.

Actions in the digital world: In the online shop, I click on the book (pick up a book), view

its description or read a preview (flip through it), and put it in the shopping cart (take it to

the checkout to buy it).

 Interaction of user and interactive system for the achievement of goals

In the user’s world, several possible goals can be identified (for example, organise flight tick-

ets as a gift for someone, visit a friend in a faraway country, get the cheapest flight tickets).

Each goal also has tasks that need to be completed to achieve it.

Task

CPUX-F Definition

A set of activities undertaken in order to achieve a specific goal.

Most tasks can be subdivided into subtasks. A subtask is a necessary decision or physical

activity that contributes to a user reaching a goal.

If the user has a specific goal (for example, visiting a friend in a faraway country), they must

perform the actions as part of the subtasks in order to reach their intended outcome (the in-

tended outcome could be, for example, to have arrived at the friend‘s home in the faraway

country).

Action

A specific activity the user performs or initiates in the user interface to achieve a goal (in-

tended outcome). Different actions may become necessary across the subtasks performed

to achieve a goal.

Performing actions contributes to the completion of necessary subtasks. As shown in Figure 3,

the user can perform these actions by interacting with the interactive system.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 33 of 132

Figure 3 interaction between user and interactive system to achieve a goal

To get from one or more contextual pre-conditions to an intended outcome, the user per-

forms each subtask in terms of a (physical) activity (for example, identifying alternative flights

to a destination) or a decision (deciding which flights to book).

As part of each subtask, users take actions on the interactive system “flight booking site” (for

example, “Show suitable flights”) and perceive the system’s reaction (for example, “three

suitable flights”). Users also take actions on the resources in the context of use (for example,

the flight schedule of their preferred airline in printed form). There are also actions that the

interactive system performs by itself (for example, automatically notifying the user when the

gate changes).

Actions required for task completion that are used in conjunction with each other are per-

ceived by the user to belong to one executable function.

Example: The actions “select delivery address”, “select payment method”, and “purchase

now” can be looked at as the executable function “proceed to checkout” and therefore, be

visualised as such.

Example on how to get from a contextual pre-condition to an intended outcome:

To complete the subtasks “decide on a product to be purchased”, “prepare to purchase

the product”, and “purchase”,

• the user first selects a task object in the interactive system (for example, a specific

book in an online shop)

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 34 of 132

• they then take one or more actions for each subtask on the task object “book” to com-

plete the subtasks (for example, “show table of contents”, “read table of contents”,

“put the book into the shopping cart”, “purchase book”)

• finally, they use the appropriate executable function to let the system perform each

selected action (for example, “show table of contents”, “add to shopping cart”).

 User interfaces for the achievement of goals

To enable the user to perform actions on the task objects, they must know

• which actions the interactive system can perform on which task objects

• how the actions of the interactive system can be initiated.

If the user interface provides the user with this action-guiding information through action-

guiding signposts for different relevant task objects, it will aid the user in fulfilling their goals.

User interface

The core components of the user interface are task objects and executable functions that

enable effective, efficient, and satisfactory task-related operation of the interactive system.

CPUX-F Definition

All components of an interactive system (software or hardware) that provide information

and controls for the user to allow them to accomplish specific tasks with the interactive

system.

From the point of view of effective, efficient, and satisfactory achievement of goals, a suitable

user interface

• provides the user with the required signposts, task objects, and their attributes as well as

the executable functions required to achieve their goals during task completion

• enables a dialogue with the interactive system which requires minimal learning effort

• presents all information necessary in a perceivable and interpretable way for users and

thereby enables actions in terms of inputs and choices efficiently

When designing the interaction between user and interactive system, the designer must in-

clude the design of task-related operation and user assistance.

Task-related operation

The interaction of the user with task objects and executable functions of the interactive sys-

tem during task completion as intended by the manufacturer.

Task-related use is typically accompanied by user assistance that allows the continuation of

task-related operation as soon as the user gets stuck or helps avoid or manage use errors.

Example: A user's goal is to ensure they are at the desired destination as soon as possi-

ble. To achieve this goal, the user uses an app which offers a task object “real-time over-

view of the next arriving trains” and user assistance with instructions on how to interpret

the overview for the subtask “find out the arrival time of the next train for a specific desti-

nation” (as part of the task “travelling by public transport”).

This curriculum focuses on the design of task-related operation (see Figure 4).

Task-related operation is the core of the users’ interaction with the interactive system while

working towards the goal (intended outcome). To complete all relevant tasks with the help of

the interactive system, a user must be able to locate and use all task objects and executable

functions efficiently. The design of task objects provides the necessary information and sign-

posts to executable functions in the appropriate scope.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 35 of 132

Figure 4: Task-related operation and components of an interactive system

 User assistance: Explicit action-guiding information in addition to task

objects and executable functions

Task objects with their designed attributes and signposts to executable functions and other

task objects give users an implicit action-guidance. Implicit refers to the clear correspond-

ence between functionality and the user’s task, which makes the required interaction obvious

to the user. Task objects need to be designed in a way that signals to users that they can

perform a certain action (affordance) and allows them to understand which of the available

actions is the intended one.

For complex tasks, it might not be sufficient to make the appropriate task objects, attributes,

and executable functions available in the user interface. Users might need explicit user assis-

tance for task-related operation.

User assistance

CPUX-F Definition

Information to help a user to interact with an interactive system.

In addition to task objects, attributes, and signposts, the user interface has to provide explicit

action-guiding information to let the user know which dialogue step has to be performed next

in the process of a complex task in the interactive system. Explicit action-guiding information

is system-initiated user guidance (for example, feedback, status information, instructions),

online help, and user documentation.

An example of the lack of explicit action-guiding: In gesture-driven user interfaces (for ex-

ample, the app “Pinterest”), users must first perform an initial action like tapping or swip-

ing to make the available functions visible. Because of the lack of explicit action-guiding

information, the designer must include, for example, a three-step instruction after the in-

stallation of the app, so that the user can learn the necessary interaction.

Example for explicit action-guiding: A user interface provides information about how and

when a button will reach the enabled state and displays an explicit action-guiding infor-

mation “form cannot be sent because one or more mandatory fields are empty” so that

the user has guidance on how to continue the task.

are used
for creating,
modifying or

gathering
information

about

Interactive System
Combination of hardware, software and servicesTask objects in the

context of use

(known analogue

and digital world)
User assistance

Online help

System

initiated user

guidance

User

documentation

User with goals

and expectations

Executabl

e

functions

Executabl

e

functions

Executable

functions

provided by

the system

Task objects

• title of the task

object

• attributes of the

task object

• signposts to and

information on

executable

functions or other

task objects

Task-related Operation

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 36 of 132

 Intended and unintended consequences of user interface design

Designing the task-related operation and user assistance by providing task objects and nec-

essary executable functions has its consequences. Every design decision made by the de-

signer influences the behaviour of users. User behaviour can be intended or unintended.

Every use error represents unintended user behaviour. Both intended and unintended user

behaviours must be considered across all touchpoints.

The user’s behaviour can have its roots in the design of both the user interface and of the

technical system, for example, system response times due to technology.

The interactive system should be designed in such a way that the user's behaviour is opti-

mally supported and intended behaviour is stimulated, leading to effectiveness, increased ef-

ficiency, and user satisfaction.

Examples of positive consequences are

• users adapting their behaviour during their work routine to make full use of the interac-

tive system because it is more efficient and satisfactory than using another interactive

system or no interactive system at all.

• users now using the interactive system more often than before.

Other than the behaviour intended by the designer, unintended behaviour can also occur.

Unintended behaviour is usually undesirable.

Examples of undesirable behaviour are

• repeated use errors

• avoiding using of the interactive system

• use of workarounds

• frequently asking for help from other users

• using the system for tasks for which it was not designed

• exclusive use of search instead of navigation because of a lack of information scent.

Possible reasons for undesirable behaviour are

• the system does not support the achievement of goals sufficiently.

• new and difficult system-initiated subtasks have to be performed (for example, register-

ing) because of the use of the interactive system.

• unnecessary actions are added within necessary subtasks or take longer to perform than

before.

Users’ behaviour is not only influenced by the design of the user interface, but also by prede-

fined procedures and work processes, the touchpoints available for the interaction with the

interactive system, and contextual aspects of the interaction. Furthermore, other products

and services available on the market can influence users’ behaviour with an interactive sys-

tem since they generate expectations concerning the functioning of the system (and thus in-

fluence users’ mental models).

Work processes, touchpoints, or culture might have to be adapted when specifying the user

requirements as a basis for designing solutions because they cannot be shaped by user in-

terface design itself.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 37 of 132

2.2 Design activity: conceptual modelling

In conceptual modelling, the designer defines how the user in-

teracts with the interactive system. During this design activity,

task objects and their attributes, and executable functions

needed for effective, efficient, and satisfactory task performance

are identified.

In the first step, the designer adapts the task models of the cur-

rent context of use in accordance with the user requirements,

to the task models for design, which are the basis for develop-

ing dialogue steps along all tasks (and subtasks).

Interaction specifications are particularly suitable for specify-

ing the intended dialogue steps and to determine the task ob-

jects and executable functions systematically. While interaction specifications ensure that

each dialogue matches the user’s subtasks, narrative use scenarios, storyboards, and user

journey maps are more suitable for communicating the developed dialogues with users and

other stakeholders to obtain feedback.

Learning Objectives

2.2.a
Understand how interaction specifications are derived from an understanding of the

user’s tasks and conformance with user requirements.

2.2.b Be able to specify dialogue steps and identify task objects and their attributes, and

executable functions using interaction specifications.

2.2.c Know different forms of use scenarios used to communicate the specified interac-

tion to certain roles in a design project.

 Creating task models for design

Conceptual modelling starts with adapting the task models of the current context of use.

Task model

Task models form the basis for the development of interaction specifications and use sce-

narios, and are identified in the context of use analysis.

CPUX-F Definition

A description of the subtasks within a task that have to be carried out to reach the user’s

goals.

A task model identified in the context of use typically has to be adjusted as a task model for

design, for the following reasons:

• the context of use for design is limited (for example, by focusing on a special user group)

• subtasks are added because of the use of a certain interactive system or

• users’ tasks were changed in conceptual modelling; for example, if a subtask was re-

moved because it was automated.

Since the task models identified during the context of use analysis reflect the current situa-

tion (as-is), it is likely that the way users perform tasks to achieve their goals will be opti-

mised in terms of the (intended) design of the interactive system reflecting the derived user

requirements.

Conceptual
Modelling

Information
Architecture

Interaction
Design

Interface
Design

Information
Design

Sensory
Design

Figure 5 Design activity: Con-
ceptual modelling

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 38 of 132

User requirement

CPUX-F Definition

A requirement for use that provides the basis for the design and evaluation of an interac-

tive system to meet identified user needs.

In some cases, a task model may not have been identified during analysis of the context of

use: for example, when the task is new. In this case, the designer develops ideas on how the

task model could look like in the future and evaluates their ideas with users.

Taking business objectives, new technological capabilities, and identified user requirements

into consideration, design decisions for a future interactive system may have to acknowledge

that task models might change, i.e.

• certain subtasks have to be supported differently (for example, instead of creating a route

using a map, users enter their starting and destination point and receive their route infor-

mation)

• other subtasks will not require interaction at the user interface (for example, because they

are automated)

• new subtasks will arise (for example, a required registration for using the interactive sys-

tem).

Task model for design

An adaption of the task model from the context of use analysis that is made for one of the

following reasons:

• the context of use for design has been limited (for example, by focusing on a special

user group)

• there are added subtasks because of the use of a certain technology

• users’ tasks were optimised during the conceptual modelling

The adaptation can include deleting, adding, or changing tasks and subtasks.

As changes in the task model have consequences for the design of the interactive system,

the new or updated task models for design should be the basis for further design activities to

support the users in achieving their goals. The following example shows how a task model

for design is created.

Example: A designer creates an interactive system (mobile app and website) for making

reservations at restaurants. For this, the designer studies the task model of the current

context of use (which either has been identified as part of a context of use analysis or is

simply being assumed) to see how restaurant visitors are currently making reservations.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 39 of 132

Table 4 Task model

Task Reserve a table in a known restaurant

User group Visitor of the restaurant

Contextual pre-

condition(s)

• The visitor has decided to go for dinner with a group of people

• The visitor has decided on a specific restaurant

• The visitor has decided on a specific date and time frame

Intended out-

come(s)
The visitor has reserved a table

• for the desired date

• within the desired time frame

• for the intended number of people.

The visitor has a confirmation that they can present upon arrival at

the restaurant.

The task model of the current context of use includes the subtasks:

• call the restaurant of choice

• explain that a reservation is required for a desired date and time

• communicate the number of people

• communicate your surname

• confirm that the table is available

• confirm that the table will be reserved

• write down the name of the restaurant, the date and time of the reservation, and the

number of people

• inform other participants that the table has been booked for <date>/<time>.

The designer analyses the user requirements for the mobile app and website (irrespec-

tive if they are based on a context of use analysis or are being anticipated in lack of em-

pirical information).

UR1: With the system, the user shall be able to select a restaurant of choice.

UR2: With the system the user shall be able to select a date and time for an intended
reservation.

UR3: With the system, the user shall be able to know when the tables are available at
the intended date.

UR4: With the system, the user shall be able to know the shape of the table (round or
rectangular).

UR 5: With the system, the user shall be able to know the maximum number of people
servable at the table.

UR6: With the system, the user shall be able to select the channel through which they
can receive their confirmation.

UR7: With the system, the user shall be able to know whether the reservation was suc-
cessful.

UR 8: With the system, the user shall be able to select whether the reservation confir-
mation should be stored in their personal calendar.

The designer considers how the reservation process should work with the interactive sys-

tem. Considering the user requirements, the designer identifies that the user does not

need to call the restaurant and explain their request. They can pick a restaurant of choice

and check for the availability of tables at the desired date and time. Once the guest se-

lects a table and books it, the confirmation is received either by e-mail or by text mes-

sage, and documentation happens at the same time.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 40 of 132

As a result, the designer adapts the task models for design to five subtasks accordingly

1. Decide on the restaurant of choice

UR1: With the system, the user shall be able to select a restaurant of choice.

2. Check for the availability of tables at the desired date and time

UR2: With the system, the user shall be able to select a date and time for an in-

tended reservation.

UR3: With the system, the user shall be able to know when tables are available at

the intended date.

3. Decide on one available table and book it

UR4: With the system, the user shall be able to know the shape of the table (round

or rectangular).

UR5: With the system, the user shall be able to know the maximum number of peo-

ple servable at the table.

UR6: With the system, the user shall be able to select the channel through which

they can receive their confirmation.

4. Secure the reservation details

UR7: With the system, the user shall be able to recognise that the reservation was

successful.

5. Inform fellow guests about the reservation

UR: None – Outside the scope of the interactive system to be designed

Designers usually prefer an open solution space. If there are restrictions to this solution

space, it must be checked whether this has any influence on the subtasks of the user, which

results in adapting the task models for design.

While working iteratively on the design activities, designers might uncover further changes

required in the task models for design. These changes result in adapting the task model for

design continuously throughout the entire design process.

The following are considered while deciding if a task model should be adapted for design:

• Identifying the constraints for design, considering business objectives and technological

decisions (for example, mobile app and website) from the design project’s stakeholders

• Checking whether there are any limitations for the intended context of use (regarding

user groups, tasks, user goals, environment, or resources) for the interactive system

• Determining whether working on an already existing technical system creates constraints

for the design, as subtasks (for example, storing the confirmation) will be supported out-

side the scope of the interactive system (for example, by the personal calendar app of the

user).

Further changes can be caused by feedback from users and other stakeholders or by a bet-

ter understanding regarding task objects, their attributes, and executable functions that are

necessary for users to interact successfully with the system. Changes can also affect work

and business processes and must be discussed with all parties involved.

 Creating interaction specifications based on task models

When designers have developed an initial idea for future use by adapting the task model for

design, they specify how the interaction between the user and the system should take place.

At the same time, they define what support must be provided by the technical system.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 41 of 132

The starting point for modelling interaction can be a variety of activities, for example, drawing

simple scribbles, conducting a role play, or coming up with a story. This way, designers

model a dialogue for each supported task and their subtasks. The designer must ensure that

the user requirements are met for each task. To describe the interaction between the user

and the system and support the task at hand as well as possible, the dialogue steps between

the user and the system throughout all the subtasks for each task model are determined.

Dialogue step

Each individual action of the user (making a choice, making an input) and the resulting reac-

tion at the user interface.

Each dialogue step includes

• the action of the user (selecting an available table)

• the reaction of the interactive system (showing the shape of the table and the maximum

number of people that can sit at the table)

• whether the dialogue step is initiated by the user (for example, the restaurant visitor) or

automatically by the system (for example, informing the user that they are running late for

their booked table).

A table that maps the task model for design, the dialogue steps for each subtask, and the

user requirements to be implemented, serves as a structured notation to specify the interac-

tion.

Interaction specification

A specification of all dialogue steps to be enabled between the user and the intended inter-

active system adhering to the task model for design and the user requirements.

The dialogue steps consist of each user’s action and the corresponding reaction of the user

interface. They are embedded in the task model for design and user requirements so that the

dialogue becomes an explicit, step-by-step guide within each subtask of the task to be sup-

ported and clearly points to the user requirements.

This way it is possible to specify dialogue steps in terms of user actions and reactions of the

interactive system, which clearly adhere to the task model for design and truly implement the

user requirements.

The term interaction specification can be misleading. It is not about specifying a concrete in-

teraction of the user by selecting concrete user interface elements. It is about the general de-

scription of this interaction in terms of a dialogue (actions of the user and reactions of the in-

teractive system across the subtasks) whilst the user is achieving their goal. Since this speci-

fication prescribes the intended behaviour of the user when performing tasks with the sys-

tem, it can also be interpreted as a use scenario in a structured form (in contrast to a narra-

tive use scenario in semi-structured form).

An interaction specification has the structure shown in Figure 6. Such an interaction specifica-

tion should be drafted for each task supported by the system.

• Column 1 contains the task model for design including all subtasks for the task.

• Columns 2 and 3 contains the dialogue steps within each subtask.

Typically, each subtask contains one or more dialogue steps.

• Column 4 contains the user requirements to be implemented by the dialogue steps.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 42 of 132

Subtasks Action of the user Reaction of the user interface User requirements

 Initial action guiding infor-

mation:

<information supplied by the

system that enables the start

of subtask 1>

Subtask 1 Action 1.1 Reaction 1.1 User requirement 1.1

User requirement 1.2

 Action 1.2 Reaction 1.2 User requirement 1.3

 … … …

Subtask 2 Action 2.1 Reaction 2.1 User requirement 2.1

User requirement 2.2

 Action 2.2 Reaction 2.2 User requirement 2.3

Subtask 3 Action 3.1 Reaction 3.1 User requirement 3.1

… … … …

Figure 6: Structure of an interaction specification

The order of specifying content items within each interaction specification is as follows:

1. Add all subtasks to column 1.

2. Assign each user requirement to at least one subtask and add each user requirement to

column 4.

3. Specify the “initial action-guiding information” in the top cell of column 3. This is the infor-

mation needed by the user, so they can take the first action as part of the first subtask.

4. For each subtask, specify the sequence of necessary actions by the user and the reac-

tions of the user interface (dialogue). Actions are always choices or inputs and reactions

are the information expected by the user after each action. For each reaction, whenever

necessary, additional action guiding information can be added.

Example: Interaction specification containing the task model for design, the user require-

ments, and the dialogue steps to be completed by the user.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 43 of 132

Table 5 Exemplary interaction specification

Subtasks Action of the user Reaction of the user in-

terface

User requirements

 Initial action-guiding in-

formation:

• Current location of

the user

• Restaurants nearby

1. Select the

restaurant of

choice

Input:

(Parts of the)

name of the res-

taurant

Show:

Restaurants matching

the (parts of the) name

UR1: With the system,

the user shall be able to

select a restaurant of

choice.

2. Check for

availability of

tables at the de-

sired date and

time

Select:

• Date

• Time

• Number of

people

Show:

• Time slots the ta-

bles are available

for the intended

number of people

• Status information

in case no tables

are available

UR2: With the system, the

user shall be able to se-

lect a date and time for an

intended reservation.

UR3: With the system, the

user shall be able to rec-

ognise when tables are

available at the intended

date.

3. Decide on one

available table

and book

Select:

(One) available

table

Show:

Details of available ta-

ble

UR4: With the system, the

user shall be able to know

the shape of the table

(round or rectangular).

UR5: With the system, the

user shall be able to know

the maximum number of

people servable at the ta-

ble.

 Select:

Reserve

Show:

• First name

• Last name

• Mobile number

• E-mail address

UR6: With the system, the

user shall be able to se-

lect, the channel through

which they can receive

their confirmation.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 44 of 132

Subtasks Action of the user Reaction of the user in-

terface

User requirements

 Input:

• First name

• Last name

• Mobile num-

ber and/or

• E-mail ad-

dress

Show:

• First name

• Last name

• Mobile number

and/or

• Email-address

• Additional action-

guiding information:

“Confirmation-E-

mail can be stored

in calendar app.”

4. Secure reser-

vation details

Select:

Confirm reserva-

tion

Show:

Status information that

reservation confirma-

tion has been sent

UR7: With the system, the

user shall be able to rec-

ognise whether the reser-

vation was successful.

5. Inform other

participants

about reserva-

tion

Dialogue contin-

ues on e-mail

app or text mes-

sage app (out of

scope)

-/-

In addition to regular use, which is covered by the example of the interaction specification

above, the designer must also consider irregular use. Irregular use refers to undesired situa-

tions that may occur during use, such as user errors. The designer also creates interaction

specifications for irregular use (for example, error handling), as shown in Table 6.

Example of an interaction specification supporting error robustness

Table 6 Interaction specification of irregular use (error handling)

Action of the user Reaction of the user interface

Input:

Number of people as a word, for

example, “three”.

Show:

Next to the input field for the number of people, it is

indicated that only numbers can be entered (use er-

ror recovery).

Input:

Number of people as number “3”

Show:

Input is correct.

Input:

Name of the person making the

reservation

The name of the person making the reservation con-

tains a zero instead of an O, the system interprets

this typing error unambiguously, does not output an

error message and changes the number to a letter

by itself (use error tolerance)

When developing interaction specifications, quality criteria must be considered in order to

avoid methodological mistakes.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 45 of 132

Quality criteria for interaction specifications

• Each interaction specification must be referenced to a specific task and (one or more)

user group(s).

• Subtasks and user requirements must be part of the interaction specification and consid-

ered when identifying task objects, attributes, and executable functions.

• Subtasks must always be formulated as object-verb constructions oriented towards the

goal to be achieved and not towards the details of the solution in mind.

• The interaction specification must be complete regarding subtasks and dialogue steps

from the perspective of the respective task model.

• Each dialogue step must be described from the point of view of the task to be completed,

not from the perspective of a required solution.

• Interaction specifications must be formulated specifically to ensure that dialogue steps,

executable functions, and task objects can be clearly identified.

• The same level of granularity must be applied to all dialogue steps. Dialogue steps must

always be phrased as inputs, choices, or “locate / recognise / understand” as part of a

subtasks.

Common mistakes include

• adding new user requirements that are not based on the context of use but are based on

the solution in mind

• describing the implementation of interaction with the interactive system by stating specific

user interface elements (having a particular interactive system in mind)

• restricting the supported dialogue steps too early, for example, based on technical frame-

work constraints

• neglecting dependencies between the individual tasks because individual tasks are con-

sidered in isolation.

 Identifying task objects, attributes, and executable functions in interac-

tion specifications

When the designer has specified the interactions between the user and the system, specific

task objects, their attributes, required executable functions, and the necessary explicit action-

guiding information (user assistance) become apparent. The designer derives task objects

and executable functions from the dialogue steps.

• Each reaction (column 3 of the interaction specification) involves a task object or an at-

tribute of a task object (or additional, explicit action-guiding information needed by the

user).

• Each action (column 2 of the interaction specification) naturally represents an action on a

task object. If individual actions always directly follow each other within a subtask, this set

of actions can be specified as a coherent executable function. For example, the action

“reserve” is always followed by the action “input personal details” and then “confirm reser-

vation”. Therefore, “reserve” may represent an executable function containing all these

actions.

The example below shows the derived task objects and executable functions from the inter-

action specification stated above. It is helpful to first have an overview of task objects and ex-

ecutable functions and then have a table that specifies the attributes for each task object.

An example of an overview of task objects and executable functions on each task object:

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 46 of 132

Table 7 Overview on all task objects and executable functions

Task objects Executable functions on each task object

Restaurant • Show available tables

• Select room

• …

All available tables • Specify a table

• Select shape

• Select location (at window, in centre)

• …

Available Table • Reserve:

• Input personal details

• Select “Confirm reservation”

• …

Reservation • View

• …

Reservation confirmation • Save in calendar

• select calendar (private, work…)

• …

• Cancel reservation

(This executable function has been added from an-

other use scenario for the task “cancel a reservation”)

System developers and designers thereby receive a structured and detailed overview of the

task objects, their attributes (see Table 8) and executable functions (see Table 7) which must

be provided by the interactive system to be developed.

For each subtask, the designer must determine the task objects the user created and/or

modified and/or gathered information about.

Example: If the reservation was successful, the task object “reservation confirmation”

must be created by the interactive system. The visitor views (gathers information about)

the confirmation to determine whether the reservation was successful.

Example for an overview of task objects and their attributes in detail:

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 47 of 132

Table 8 Specification of all task objects and their attributes

Task objects Attributes Details for each attribute

Restaurant

 Name A-Z

 Address Street and number

Postcode

City

Country

 Telephone + Country code Phone number

 E-Mail <name>@<domain>.<domain suf-

fix>

List of available ta-

bles for a specific

date and time

Available table 1

…

Available table n

Time 1…n

Shape (round or rectangular)

Available Table Availability hh. mm

 Shape Round

Rectangular

 Max number of people 2, 4, 6, 8

Reservation Person who has made a reser-

vation

A-Z

 Date and Time dd.mm.yyyy, hh.mm

 Table Round

Rectangular

Indoors

Outdoors

 Number of guests 1, 2, 3, 4, 5, 6, 7, 8

Reservation confir-

mation

Name of sender A-Z

<name>@<domain>.<domain suf-

fix>

 E-mail address of the sender

(in case of text message, only

name of sender)

 Name of restaurant A-Z

 Address of restaurant Street and number

Postcode

City

Country

 Date and time of reservation

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 48 of 132

Task objects Attributes Details for each attribute

 Name of the person who made

the reservation

 Number of guests

 Type of table Round

Rectangular

It is also possible to derive the task objects and executable functions directly from the user

requirements.

For example, the user requirement “UR3: With the system, the user shall be able to recog-

nise when the tables are available at the intended date.” allows us to derive the task object

“Available table” with its attributes “time 1…n”.

However, this approach requires rigor and discipline in formulating user requirements, which

is typically only the case if an explicit context of use analysis with subsequent analysis of

user requirements has preceded the design project (see CPUX-UR). It is advisable to use

the approach of analysing interaction specifications for conceptual modelling, particularly with

team effort, where it needs to be ensured that every team member is included.

 Considering dependencies and creating variations

The sub-activities described in conceptual modelling (Creating Task Models for the Design,

Creating Interaction Specifications, Identifying Task objects, Attributes, and executable func-

tions) are performed for each individual task to be supported by the interactive system.

Example: In addition to the task “reserve a table”, the tasks “cancel a reservation”,

“postpone a reservation” and “write a guestbook entry” should also be supported.

This is why the designer has created task models and interaction specifications for all

three tasks. They have also identified task objects, attributes, and executable func-

tions that are not just related to the reservation.

Task models for the design must always be created from the perspective of all tasks to be

supported. All existing dependencies between the tasks must be considered. This enables the

user to process tasks flexibly. When iterating through the various tasks to be supported and

their dependencies, the need for adjustments to the individual task models for design is iden-

tified. The identified task objects, their attributes, and the executable functions are further re-

fined.

Example: The user group “restaurant staff” may have the task “cancel reservations"

in case of an emergency. A subtask of the restaurant staff’s task model for “cancel

reservations” could be “inform guests about their cancelled reservation”. In order for

this subtask to be completed successfully, the staff must be able to reach the restau-

rant visitors who reserved a table (for example, by phone or mail). Therefore, the de-

signer has added a subtask "Enter personal data for notification purposes" to the res-

taurant visitor’s task model for the task "Reserve a table". If the user requirements of

the new subtask “Enter personal data for notification purposes” are unknown, this

subtask would need to be discussed with users in order to get feedback on user

needs and derive user requirements.

The designer not only iterates through dependencies of different tasks, but also different vari-

ants of task models for design and interaction specifications for the same task.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 49 of 132

Example: The designer creates several task models for the task "Reserve a table". In a

more innovative variant, restaurant visitors are able to select the desired table from a set

of photos that show different views of the table's position. This creates an additional sub-

task for the users (guessing the location of the table).

The designer switches the focus between single task models and dependencies between

task models. The dependencies between task models 1 and 2 and 2 and 3, as shown in Fi-

gure 7, along with the dependencies between task models 1 and 3 have to be considered. De-

signers work with different variants of task models for design and interaction specifications to

validate the interaction, task objects, attributes, and executable functions with users and fur-

ther stakeholders.

Figure 7 Consideration of dependencies between tasks and creation of variations of the same task

Interaction
specification for

task 1

Task
model for

task 1

Task
model for

task 1

Task
model for

task 1

Interaction
specification for

task 1

Interaction
specification for

task 2

Task
model for

task 2

Task
model for

task 2

Interaction
specification for

task 2

Task
model for

task 3

Task
model for

task 3

Task
model for

task 3

Interaction
specification for

task 3

Task object 1
with attributes,

executable
functions and

signposts

Task object 2
with attributes,

executable
functions and

signposts

Task object 3
with attributes,

executable
functions and

signposts

Task object 4
with attributes,

executable
functions and

signposts

Task object 5
with attributes,

executable
functions and

signposts

Consider
dependencies

Consider
dependencies

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 50 of 132

 Communicating use scenarios to users and stakeholders

The specifications of the designer must be documented in a way that enables users and

other stakeholders to understand and evaluate the intended interaction with the system.

In Early design, interaction specifications help to specify dialogue steps that support the

user’s tasks, effectively and efficiently meeting the user requirements. Use scenarios in their

different forms are particularly suitable for communicating the specified dialogue steps to us-

ers and other stakeholders.

Use scenarios in the narrative form as well as in the storyboard form help underline the com-

prehensibility of decisions on the use of an intended interactive system through the means of

storytelling. User journey maps illustrate use scenarios that refer to several touchpoints or

several user tasks along a broader process.

User journey map

CPUX-F Definition

A graphical or tabular description of all encounters users have with the interactive system,

covering all touchpoints that influence the user experience, making the overall user experi-

ence tangible for others.

Use scenario

CPUX-F Definition

Narrative text description that describes an intended usage situation with the interactive

system under development.

• The purpose of use scenarios is to provide a very early, tangible basis for discussions

about what the intended interactive system could be like for the user, before prototypes

are constructed. Use scenarios are based on a deep understanding of the context of

use, user needs, user requirements as well as discussions with users and stakehold-

ers.

• The specific user in the use scenario is often a persona.

• Use scenarios illustrate the use of the interactive system in a real context. They can be

viewed as textual representations of the initial prototypes of a new interactive system.

They enable developers to understand processes and context.

• A use scenario should avoid placing unnecessary constraints on the design by refer-

encing specific objects, such as command buttons, in the user interface.

Interaction specifications can be used as a basis to illustrate use scenarios in various forms,

for example, narrative text, story board, user journey map.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 51 of 132

Designers must be able to convert an interaction

specification into different forms of use scenarios.

Even if the designer has not created an interaction

specification, they at least assume the dialogue

steps before describing the user behaviour in a

use scenario.

Different roles in a design project require different

ways of communicating. This is related to the way

they work with this information.

• For designers, the development of interaction

specifications for each task greatly simplifies

the development of the information architec-

ture and the task-related interaction se-

quences in interaction design. The table form

of the interaction specification is necessary to

portray the dialogue as accurately as possible. Other roles involved in design not only re-

ceive an understanding of the intended behaviour of the interactive system, but also get

insights into the task objects, their attributes, and executable functions that must be pro-

vided to the user by the intended interactive system.

• For the validation of interaction specifications with users and the collection of feedback

from stakeholders, use scenarios in the narrative form, storyboards, or user journey maps

are more suitable. Users and other stakeholders gain an understanding of how they can

achieve their goals in the future when interacting with the interactive system and what

task objects and executable functions can be provided to them for that purpose.

Example: The interaction specification for regular use can be easily transferred into a

simple narrative use scenario:

“Lisa wants to make a reservation for her and four colleagues in her preferred restau-

rant. She uses the “enjoy your evening” app where she picks the restaurant of her

choice and checks for the availability of tables on the desired date and time. Once

she selects a table (she prefers round tables for groups) and makes the booking, the

confirmation is sent by e-mail to her, along with a calendar entry. She then simply

sends the calendar entry to her colleagues and everybody is instantly informed that

the booking has been completed.”

Narrative
use scenario

Storyboard
Interaction
specification

User Journey
Maps

transferred
into

Figure 8 Different forms of use scenarios

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 52 of 132

3 First drafts

Using the results of conceptual modelling, the designer develops the information architecture

as the foundation for creating task-oriented interaction sequences, the structure of the user

interface, and its required views. To get feedback for optimising the design iteratively, the de-

signer makes their design decisions tangible for users and other stakeholders.

3.1 Design activity: information architecture

When developing the information architecture, it is the de-

signer’s task to elaborate on the conceptual model. They

identify signposts which will be used to navigate to task ob-

jects and executable functions, and connection paths to nav-

igate between them, and visualise the information architec-

ture for evaluation with users and other stakeholders. There

are several ways to present structured task objects, sign-

posts, and navigation paths, including arranged overviews of

task objects, tabular overviews of all task objects, hierar-

chical trees, and schematic representations.

The designer has to create a navigation system, based on

following the navigation structure, realised by the inclusion

of navigation elements. Signposts are used within the navigation structure to make task ob-

jects and executable functions accessible to the user.

Card-sorting and tree-testing are methods for validating the information architecture and

making conformity with the mental models of the users visible.

Learning Objectives

3.1.a
Understand the different elements of information architecture including task ob-

jects, executable functions, content, terminology, and navigation structure

3.1.b Know the different information needed to develop the information architecture

3.1.c Understand how to create the information architecture

3.1.d Be able to enhance and structure task objects as an important part of the infor-

mation architecture

3.1.e Understand the difference between navigation systems, types of navigation struc-

tures, and navigation elements

3.1.f Be able to identify deviations between the information architecture and the user’s

mental model represented in card sorting results, and initiate corrective action

3.1.g Understand the difference between card sorting and tree testing

 Development of the information architecture

In conceptual modelling, the designer will have identified task objects, attributes, and execut-

able functions that are relevant to the user across all tasks to be supported by the system.

This is the basis for developing an information architecture that will be support all the in-

tended tasks of the users.

Conceptual
Modelling

Information
Architecture

Interaction
Design

Interface
Design

Information
Design

Sensory
Design

Figure 9 Design activity: Information
architecture

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 53 of 132

The information architecture must fulfil two aspects:

• It must ensure that the task objects, attributes, and executable functions match the ex-

pectations of the users and are learnable from a semantic point of view (what task objects

and executable functions are presented and how do they interrelate?)

• It must help users locate task objects and executable functions from the point of view of

interaction (Where to go next, within the navigation structure?). For this purpose, task ob-

jects must be “signposted”.

Example: The task object “science fiction book” includes a signpost labelled “add to shop-

ping cart” which leads the user to the executable function “order book” and allows them to

enter the purchase process of the book.

Example: A user wants to buy a science fiction book (task object) online. They first need

to locate the overview of all science fiction books. To be able to decide on a book, they

need to find out how to gather more information about the different books: authors, short

descriptions, and prices (attributes). If the user finally decides on one book, they need to

understand how to select it and enter the purchase process (executable function).

A good information architecture supports flexible task handling by the user in terms of the se-

quence and interruptibility of the tasks. Both the enhancement of task objects and the struc-

turing of task objects must contribute to this.

Example: If a user is interrupted while writing an email, it is saved as a draft. To ensure

that the user can continue writing it later, the designer added a signpost “continue writing”

to the executable function "open draft mail".

The elements of an information architecture are as follows:

• Titles of all task objects, (for example, “book”) and titles of all attributes of each task ob-

jects, (for example, “author of book”)

• Titles of executable functions, for example, “proceed to checkout” and titles of all individ-

ual actions enabled within each executable function (for example, “select number of cop-

ies to be ordered”)

• Content which includes attributes of task objects, for example, “author of book” and pa-

rameters for setting executable functions, for example, “filter categories”

• Terminology: All terms used in the user interface, for all contents, and also all labels of

signposts like “add to shopping cart”

• Navigation structure to

• navigate towards task objects and executable functions using titled signposts

• navigate within task objects and executable functions (for example, “table of contents”

of a book is presented to the user, which allows them to navigate within the book to

see parts of the contents)

• navigate across task objects and executable functions using connection paths (for ex-

ample, other books with similar contents)

When developing an information architecture, designers can use various bits of information

as input:

• Information from the context of use analysis – User group profiles, personas, task mod-

els, and as-is scenarios provide information about the natural superordination or subordi-

nation of task objects.

• Mental models of users – If the mental models of the users are not considered, users

may not be able to navigate through the interactive system.

• Currently used systems – It is often helpful to identify which task objects, attributes, and

executable functions can be found in existing systems and how they are structured.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 54 of 132

Based on this, designers can perform a critical analysis on whether task objects need to

be amended, customised, or structured differently.

• Content to be presented – An essential input for the information architecture can be de-

rived from an analysis of the content to be presented (data/facts, text, images, au-

dio/video), which varies from area to area. Contents to be presented are attributes of task

objects (for example, a short description of a movie on a streaming platform).

Quality criteria for developing an information architecture

There are quality criteria that an information architecture must adhere to and methodical mis-

takes that must be avoided:

• Along with the context of use information, the contents of the information exchange be-

tween the user and the system must also be used as input for the resulting information

architecture.

• When developing an information architecture the focus must be on representing and

structuring task objects and executable functions and not on the use of specific user inter-

face elements.

• Links between the task objects must be included in the form of connection paths.

• User goals, business-centred objectives, as well as the resulting task models for design

and user requirements must be considered when developing the information architecture.

• For evaluating the developed information architecture, an appropriate type of representa-

tion must be chosen depending on the purpose of evaluation.

Common methodical mistakes include

• focusing on a particular task by developing a structure of task objects in isolation while

neglecting relationships and dependencies between task objects

• focusing on the design of the user interface by selecting, configuring, and combining user

interface elements instead of focussing on the development of access to task objects and

executable functions and their structure

• specifying task objects that cannot be traced back to the context of use information.

The following subchapters outline a possible procedure for developing an information archi-

tecture:

1. Enhance task objects with signposts

2. Structure task objects by determining connection paths

3. Make the information architecture visible for evaluation

4. Create the navigation structure using connection paths and signposts

5. Evaluate the information architecture.

 Enhance task objects with signposts

The first sub-activity of developing an information architecture focusses on the individual task

objects. Starting from a specific task object, the designer identifies other task objects that are

related to it.

• Which other task objects could be relevant in the context of a specific task object?

• Which attributes and signposts must be added as a result?

The interaction specifications and the underlying context of use information help with en-

hancing task objects from the user’s point of view. Compared to the task object the user

knows from their known (analogue and digital) world, a task object represented in the user

interface can contain greater or fewer attributes and signposts.

Example:

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 55 of 132

In a restaurant, the visitor gets a lot of information about the attributes of the task object

“table” if they take a closer look at it: the shape and height of the table, its location in the

room, whether there are decorations on the table, the number of chairs, whether the

chairs are upholstered, its availability at the moment, etc.

Considering the results of conceptual modelling, the designer decides to display the task

object “table” in less detail on the restaurant’s website to focus on what’s important from

the perspective of the user’s goal (have a table reserved): maximum number of people,

its location, and its availability throughout the whole week.

During the process of identifying signposts, the fact that task objects are created for different

users with varying goals and tasks must be taken into account. A single task object may

therefore be used in a variety of tasks.

Example of different tasks on one task object: A ticket inspector and a passenger use the

same task object: the ticket. These two user groups have different goals. The ticket in-

spector wants to check the validity of tickets, while the passenger needs the ticket in or-

der to find their reserved seat. Consequently, the inspector searches for different attrib-

utes of the task object “ticket” (information on the validity of the ticket) to the passenger

(who requires information about their seat number).

When enhancing a specific task object with signposts, the designer must consider the rela-

tionship with other task objects in order to specify necessary signposts to them. They specify

• signposts that lead from other task objects to the current task object to another task ob-

ject (trigger words)

• signposts that lead from the current task object to one or more executable functions or

other task objects (calls to action)

This way, the designer provides a basis for the subsequent structuring of all task objects and

executable functions. A task object is fully specified once its attributes, the executable func-

tions, the action they enable, and the signposts are determined.

Table 9 Fully specified task object “reservation confirmation”

Task object: reservation Details

Attributes • The person who made the reservation

• Date and Time

• Table

• Number of guests

Executable functions

(and the actions they support)

• Save in calendar

• select calendar (private, work, …)

• …

• Cancel reservation

• input reason

• …

Signposts to executable func-

tions and other task objects

(calls to action):

• Save reservation confirmation

• Cancel this reservation

• …

Signposts from other naviga-

tional points (trigger words):

• My reservations

• …

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 56 of 132

 Structure task objects by determining connection paths

If task objects are well understood and detailed, the designer can provide the user with a

meaningful structure based on the interaction specification and the context of use infor-

mation. They decide on how users get to a task object and where they go from there by cre-

ating connection paths that lead to and from task objects.

Task objects are structured from two different perspectives:

• The super- and subordination and the relationship of task objects that must correspond to

the user’s expectations or are easily learnable from a semantic point of view.

Example: The task object “overview of all books” is superior to the task object “single

book”. The task object “apple” is subordinated to the task object “fruits”.

• The signposts between task objects that indicate which task objects or executable func-

tions must be accessible via connection paths from other task objects during navigation.

Example: The executable function “add to shopping cart” is directly accessible from the

task object “single book”.

The goal of this sub-activity is to develop a structure of task objects that can be understood

by users. Task objects must be structured logically so that the users can use their mental

models to find their way around the user interface.

If users recognise task objects structured in a similar way to those in their known analogue

and digital world, they can use their task-related knowledge while performing and initiating

actions on task objects without having to explicitly learn a new way of completing specific

subtasks.

Example: A user opening their mail program expects to see an overview of all mails. They

wouldn’t expect to see a single mail, for example, the last read mail first. The task object

“e-mail” is subordinated to the task object “All e-mails”.

Users navigate from a general term to a sub-term and from there to the task object, executa-

ble function, or user assistance that they are looking for.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 57 of 132

Example: task object “All e-mails” → task object “e-mail” → executable function “delete e-

mail”.

Figure 10 Creation of an information architecture that corresponds to the user's mental models and ensures navi-
gation between task objects

 Make the information architecture visible for evaluation

To evaluate different variants of the information architecture with the internal team, users,

and other stakeholders, it must be made visible. There are various representations to make

structured task objects visible and to present it. Some exemplary representations (that are

illustrated in the following sections) are

• schematic representation

• arranged fully specified task objects

• hierarchical tree

• tabular overview of all task objects.

All types of presentations present the detailed and structured task objects in conjunction with

each other as well as the signposts to executable functions on them. Each type of presenta-

tion takes a different perspective on the task objects and their attributes, and signposts to ex-

ecutable functions and other task objects. Some types put more emphasis on the details,

others more on the relationship and super- and subordination of the task objects. Designers

must decide which presentation type is most suitable for their individual evaluation or in the

current project state.

All the above types of presentations are especially useful for designers, system architects,

and developers. Based on this, designers create a structure of the user interface, appropriate

Pool of task objects and their attributes, executable functions and signposts:

Task object 1
with attributes,

executable
functions and

signposts

Task object 2
with attributes,

executable
functions and

signposts

Task object 3
with attributes,

executable
functions and

signposts

Task object 4
with attributes,

executable
functions and

signposts

Task object 5
with attributes,

executable
functions and

signposts

Task object 1
with attributes,

executable
functions and

signposts

Task object 2
with attributes,

executable
functions and

signposts

Task object 3
with attributes,

executable
functions and

signposts
Task object 4
with attributes,

executable functions and
signposts

Task object 5
with attributes,

executable
functions and

signposts

structure

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 58 of 132

views, and interaction sequences. System architects and developers check if the attributes

and executable functions are available in the required level of detail, whether the connection

paths can be realised, and whether the intended information architecture can be imple-

mented on the technical platform.

In the following sections, the characteristics of the types listed above are explained:

Schematic representation

A schematic representation consists of sev-

eral boxes representing task objects that

are set in relation to each other. The hierar-

chy of boxes shows which task objects are

superior or subordinate to other task ob-

jects.

Using the schematic representation, the de-

signer can demonstrate that the task object

can contain further task objects (for exam-

ple, the task object “deleted mails” belongs

to the task object “folders”). Connection

paths (calls to action) are indicated by ar-

rows pointing from one task object to an-

other.

Depending on the purpose of evaluation,

the designer can decide to add more or less

detail to the task objects (for example).

Also, the designer can use different colours to distinguish different levels of the interactive

system in the scheme. The schematic representation helps to capture all task objects and

their relationships immediately.

Arranged fully-specified task objects

Figure 12 exemplary shows an overview of all the

task objects and their attributes as derived from

the interaction specification. This overview can be

represented by a set of tables detailing each task

object. These tables can then be arranged so that

the structure and connection paths between the in-

dividual task objects become visible, as shown in

Figure 12. The advantage of this type of presenta-

tion is that the designer and their stakeholders can

get both a detailed overview of each task object

and its relationship to other task objects. This eas-

ily allows the designer to identify and draw connection paths. The arrangement of the tables

can also be adapted quickly. This presentation type places a strong focus on the detailed

task objects and their relationships.

An arranged task object overview in table form can also be converted into a template form.

For example, the cores and paths method provides templates (see Figure 13) for describing

each derived task object in detail [Kalb2012]. The designer determines the structure by fol-

lowing the inward and outward paths. Just like the overviews in table form, a stack of

Figure 12 Arranged task object overviews

Folder

Sent
mails

Deleted
mails

Archived
mails

Outbox

Inbox

Unread
mails

Read
mails

Single mail

Figure 11 Example for a schematic representation

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 59 of 132

completed cores and paths templates can be arranged easily to make the structure and the

connection paths visible.

Figure 13 Example for a stack of filled out cores and paths templates

Hierarchical tree

User Goals Business Goals

Outward PathsInward Paths

Elements of the core Call to ActionTrigger Words

Core: ____________________Reservation (form)

Make a reservation on

a desired date

Increase the number of

restaurant visitors

reserve quickly and

easily

Date, time, number of people

Name of the person, who made

the reservation

…

Home

page

Google

Main

navigation
…

Facebook

Menu card

Home page

How to find us

mail address
…

Reserve a

tableReservation

formReserve at your

desired date

…

Our meals

and drinks

…

Log

o
Main navigation

Reservation form

Input: date, time,

number of people etc.

More

Informatio

n, e.g.

Facebook

link

text

User Goals Business Goals

Outward PathsInward Paths

Elements of the core Call to ActionTrigger Words

Core: ____________________Reservation (form)

Make a reservation on

a desired date

Increase the number of

restaurant visitors

reserve quickly and

easily

Date, time, number of people

Name of the person, who made

the reservation

…

Home

page

Google

Main

navigation
…

Facebook

Menu card

Home page

How to find us

mail address
…

Reserve a

tableReservation

formReserve at your

desired date

…

Our meals

and drinks

…

Log

o
Main navigation

Reservation form

Input: date, time,

number of people etc.

More

Informatio

n, e.g.

Facebook

link

text

User Goals Business Goals

Outward PathsInward Paths

Elements of the core Call to ActionTrigger Words

Core: ____________________Reservation (form)

Make a reservation on

a desired date

Increase the number of

restaurant visitors

reserve quickly and

easily

Date, time, number of people

Name of the person, who made

the reservation

…

Home

page

Google

Main

navigation
…

Facebook

Menu card

Home page

How to find us

mail address
…

Reserve a

tableReservation

formReserve at your

desired date

…

Our meals

and drinks

…

Log

o
Main navigation

Reservation form

Input: date, time,

number of people etc.

More

Informatio

n, e.g.

Facebook

link

text

User Goals Business Goals

Outward PathsInward Paths

Elements of the core Call to ActionTrigger Words

Core: ____________________Reservation (form)

Increase the number of

restaurant visitors

Reserve quickly and

easily on a desired date

Date, time, number of people

Name of the person, who made

the reservation

…

Home page

Google

Main

navigation

…

Facebook

Menu card

Home page

How to find us

mail address
…

Reserve a table

Reservation form

Reserve at your

desired date

…

Our meals

and drinks

…

Logo Main navigation

Reservation form

Input: date, time,

number of people etc.

More

Information,

e.g.

Facebook

link

Read
mails

Unread
mails

Deleted
mails

Outbox
Archived

mails

Mails
overview

Inbox

Single
mail

Folder

Figure 14 Example for a hierarchical tree

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 60 of 132

In a hierarchical tree, the task objects are arranged hierarchically. In contrast to the over-

views in the tabular and template form, the hierarchical tree emphasises the structure of task

objects and how they depend on each other. A super- and subordination of tasks becomes

visible in a compact way. In comparison to the overviews described above, the hierarchical

tree focuses less on visualising attributes, executable functions, and the labels of signposts.

Calls to action can also be added to a hierarchical tree. Figure 14 shows an example of a hi-

erarchical tree that contains calls to action (red arrows).

Tabular overview of all task objects and executable functions

• The individual tables can be transferred to one large table containing all detailed task ob-

jects and executable functions (Table 10). The advantage of this type of presentation is

that all the task objects are in one place. Additionally, the relationships between individual

task objects become visible. Any details missing from task objects can be identified and

added easily. The connection paths between task objects can be understood by reading

the columns “trigger words” and “calls to action” or illustrating them by adding arrows as

you can see in Table 10.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 61 of 132

Table 10 Tabular overview of all task objects

Task object Attributes Executable functions Signposts to executable

functions and other task ob-

jects (calls to action):

Signposts from other naviga-

tional points (trigger words):

Restaurant • Name

• Address

• Telephone

• E-Mail

• Show available tables

• Select room

• …

• Reserve now

• ..

• Restaurants around you

• …

Reservation • Person who has made

a reservation

• Date and Time

• Table

• Number of guests

• View an existing reservation

• Make a new reservation

• Reschedule an existing reserva-

tion

• Cancel an existing reservation

• …

• Show all available tables

•

• My reservations

• …

All available ta-

bles

• Available table 1 -

Available table n

• Date and time of availa-

bility

• Specify a table

• Select shape

• Select location (at the window,

in the centre)

• …

• Tables at the window

• …

• Show available tables

• …

Reservation

confirmation

• Name of sender

• E-mail address of

sender

• Name of restaurant

• Address of restaurant

• Date and time of reser-

vation

• Name of person who

reserved

• Number of guests

• Type of table

• View

• Save in calendar

• select calendar (private, work,

…)

• …

• Cancel reservation

• Add reservation to calen-

dar

• …

• View confirmation

• …

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 62 of 132

 Create the navigation structure using connection paths and signposts

 Develop the navigation structure

The navigation structure is part of the information architecture, but not identical to it.

Navigation structure

Navigation structure is a part of the information architecture and forms the structure within

which task objects and executable functions can be found specifically through signposts.

CPUX-F Definition

The logical organisation of the units of displayed information that comprise the user inter-

face.

Navigation structure comprises all the navigation paths and shows how to get from one unit

to another within the user interface structure.

It uses the actual signposts that will be presented to the user rather than the terms used in

the information architecture. These signposts can be represented by icon/text combinations,

hyperlinks, etc. The design of the navigation will already have been prepared during the de-

velopment of the information architecture by specifying signposts and connection paths.

[RoMA2015]. The connection path's signposts and labels can be found in the enhanced task

objects.

Example:

• The signpost “recycle bin symbol” on an icon placed on each book in the “list of books

selected for purchase” (labelled “shopping cart”) leads to the executable function “de-

lete”, which results in the deletion of the task object “book”. In this example, the icon

serves as a navigation element and is a part of the contextual navigation system.

• The link “This might also interest you” is the label for a connection path that takes the

user in an online bookstore from the current page with the task object “book” to a

page with the task object “suggested books” (that might be of interest to the user).

First, designers make a complete list of connection paths and signposts needed to visualise

the navigation structure. The labels of all connection paths are extracted and arranged hier-

archically; for example, in a navigation tree. Each entry in a navigation tree represents a cue

for the user that helps them locate a needed task object or executable function or a particular

form of user assistance.

The prioritisation and selection of entries within the navigation must be based on the results

of the context of use analysis; for example, based on the prioritisation of user tasks by identi-

fying the top tasks [McGo2018].

 Navigation systems to implement a navigation structure

Navigation systems are means to implement a navigation structure and consist of navigation

elements and subsystems.

Navigation system

An arrangement of information that provides users with their location in the interactive sys-

tem. It serves the user to determine their position and helps them find their way through the

interactive system (Where am I? What is nearby? What is related to what here?).

There are three major types of navigation systems (global, local, and contextual navigation

systems) and several supplemental navigation systems (sitemaps, indexes, and guides) that

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 63 of 132

are typically used in desktop-oriented websites, but which also exist in mobile environments

[RoMA2015].

• Global navigation is always available and offers direct access to the most important key

areas and functions of the interactive system.

• Local navigation complements the global navigation system and allows the user to ex-

plore a selected area more deeply.

• Contextual navigation links to pages, documents, or task objects.

Example: The typical placement of user interface elements for the different navigation

systems in a wireframe of a website or a web-based application:

Figure 15 An example of the placements of different navigation systems

In addition, there are supplemental navigation systems that exist additionally to aid the user:

sitemaps, indexes, and guides:

• Sitemaps provide an overview of the information environment.

• Indexes provide direct access to specific content.

• Guides provide a linear navigation tailored to a specific audience, topic, or task.

Examples:

• Sitemap: a table of contents in a book that represents the hierarchy of the book

• Index: a back-of-book index that presents the keywords alphabetically without repre-

senting the hierarchy of the book

• Guide: a walk-through that introduces new users to the system’s functionality.

 Structure types for navigation within content

When designing the navigation, the designer must first find out what content needs to be pro-

vided and how the user expects to navigate through it. Depending on this, the designer

chooses a structure type for navigation within the content. Frequently used structure types

are [Kalb2007]:

1. Linear structure: The linear structure is the simplest form

of a navigation model. In the case of websites, for exam-

ple, the concept means that every single page is linked

to the previous one.

Examples of a linear structure: Step-by-Step user guidance through the setup pro-

cess of a smartphone. The payment process of an online shop.

Contextual Navigation

Global Navigation

Local

Navigation

Figure 16 Linear structure

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 64 of 132

2. Hierarchical structure: Hierarchical navigation is similar

to the hierarchical tree. The home screen is at the top;

downwards the form divides into categories, each of

which branch out into further subcategories.

Example of a hierarchical structure: Navigation on

the Amazon website.

3. Net structure: The net structure is more complex, but it

does offer the option of extensive cross-linking of content.

It can, however, also cause confusion if the user loses ori-

entation.

An example of a net structure: Navigation on Wikipe-

dia website.

4. Hub and spoke navigation: Hub and spoke navigation of-

fers an efficient way to ‘reset’ a search and return to the starting point of the search (such

as the home page).

Example of a Hub and spoke navigation: Dashboard func-

tionality as access to the apps installed on the

smartphone. By pressing the Home button, the user can

always return to the Home Screen.

Navigation structures are typically static, but can also be dynamic

in various ways, meaning that navigation paths are made availa-

ble at run time depending on the system state.

Examples:

• A cross-link is only made available on a page if a certain value is entered in a certain

form field.

• A set of pages is placed in a hub structure. The hub is a search page and the only

navigation elements are a search field and the button “search”. The accessibility of

the pages on the search page depends on the search terms.

Figure 17 Hierarchical structure

Figure 18 Net structure

Figure 19 Hub and spoke navi-
gation

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 65 of 132

 Navigation elements as part of a navigation system

Navigation elements

User interface elements that serve as signposts, such as navigation bars (vertical or hori-

zontal), functional navigation, breadcrumbs, contextual links or contextual buttons, or in-

page links are used to navigate through the interactive system. Some user interface ele-

ments are typically used to create navigation systems. Frequently used user interface ele-

ments can appear as design patterns for navigation.

Figure 20: Navigation elements

Table 11 Navigation elements

Navigation element Description

Navigation bar Often called “menu”, this can be vertical or horizontal

Functional navigation Provides access to the application itself by linking to pages that sup-

port specific functions such as “login” or “change language”

Breadcrumbs Show users which hierarchy level they are currently located in and

allow them to navigate to any higher level.

Contextual link or but-

ton

Often called “cross link”, this is a direct navigation to a specific page

irrespective of its location in the navigation structure; a button used

when the navigation action also involves the execution of a system

function

In-page link A link that navigates to a different place within the current page.

Example: Navigation elements

• Global navigation is displayed via the navigation bar (horizontal) and contextual navi-

gation is displayed via contextual, in-page links.

• The arrangement of the contents follows a hierarchical navigation structure.

• The breadcrumb navigation element allows users to move systematically through the

content.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 66 of 132

Many other user interface elements or user interface patterns might serve as navigation ele-

ments, especially when implementing dynamic navigation. Dynamic navigation means that

navigation paths and the associated navigation elements only become available to the user

as they are needed.

The frequently used user interface elements for navigation can emerge as a design pattern

for navigation.

 Evaluate the information architecture

A common difficulty experienced when developing an information architecture is classifying

the task objects into a clear hierarchy, especially when terms used for attributes or signposts

may have different meanings to different people. To prevent this, the mental models of the

users must be understood, to validate the navigation paths, the titles of task objects, and the

labels of signposts to executable functions and other task objects. This will ensure that the

information architecture matches the mental models of user groups. Two different methods

can be used for this purpose: Card sorting and tree testing.

 Card sorting

During card sorting, participants are asked to sort given terms into groups (open card sorting)

or to classify them into prescribed structures (closed card sorting). Sorting, prioritising, and

renaming the terms and categories reveals structures and relationships, and verifies users’

understanding of the terms. Card sorting can be an analogue or a digital (remote card sort-

ing) procedure.

Card sorting

Card sorting can be used to identify existing mental models of the user and validate the in-

formation architecture. A card sorting activity can be either open (where users create terms

and categories themselves) or closed (where users sort terms according to prescribed cate-

gories).

CPUX-F Definition

A method for structuring information – such as menus in a navigation structure – that

involves writing key concepts onto different cards and asking users to sort these cards

into groups.

The results of a card sorting session (analogue) consist of the note-taker’s documentation:

• photos of the structures of the categories (prescribed or named by the users themselves)

with assigned terms

• notes made during thinking aloud

• the documentation of the interview that takes place during the debriefing, where the su-

pervisor discusses the result, any new terms, and the categories, as well as the remain-

ing categories or terms that are left over with the participant.

If there is no existing information architecture, an information architecture can be developed

using the results of card sorting. The structure of the categories and assigned terms should

then be used as the basis for navigation paths and the hierarchy of the information architec-

ture. All terms, therefore, should be located within their assigned category and the categories

should be easy to find. Any term that came from or was easily understood by the users dur-

ing card sorting, should retain its name.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 67 of 132

Evaluating against an existing information architecture

If an information architecture already exists, it should be evaluated for its fit with the results of

card sorting. In what cases were other categories formed by the users? Where are terms as-

signed differently? Where is a different wording used for the categories (in case of a round of

open card sorting)? These deviations must then be evaluated, and a decision made regard-

ing whether the information architecture needs to be adapted as a whole or the navigation

structure needs to be adapted according to the terminology. The results of card sorting can

be very informative for the design of the information architecture (notes from thinking aloud

and documented interviews), as they provide explanations for deviations from the mental

model based on the differing interpretations by the users.

When aligning the information architecture with card sorting results, quality criteria must be

considered, and methodical errors must be avoided.

Quality criteria include

• the results of card sorting must be evaluated for validity (i.e. you usually run several card-

sorting sessions).

• the changes resulting from the results of a round of card sorting must be communicated

to the stakeholders (other than the users).

• the categories and terms must be named within the information architecture in line with

the outcomes of the card sorting (i.e. it is about the exact wording in the card sorting).

A common methodical mistake is:

• arbitrarily renaming categories after testing when adapting the information architecture.

 Tree testing

Tree testing

A method for evaluating the retrievability of information during task completion within a

given navigation structure. The user moves through the navigation structure in order to per-

form a given test task successfully.

During tree testing, users search for information using clearly formulated tasks within a given

hierarchical tree/menu structure. To conduct a tree test, all the main categories and subcate-

gories of the intended navigation structure (the tree) must be prepared. The moderator gives

the participant a piece of information to be found or a task, and lets them make navigation

decisions while navigating through the navigation structure (tree) to get to the place where

the task can be completed, or the information found.

The method makes possible detours visible, which the user uncovers when navigating

through the menu structure. Different places users search for the information can be tested

to determine the variant that appears most logical to the user. Tree Testing is performed

analogously or digitally (for example, remote tree testing).

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 68 of 132

3.2 Design activity: Interaction design

In Interaction design, design decisions are made based on

the interaction specification and the information architecture.

The most important tasks for the designer are defining and

visualising the task-related interaction sequences and

views and, thereby, building the user interface structure of

the perceptible part of the user interface.

Learning Objectives

3.2.a Know which design decisions are part of Interaction design.

3.2.b
Understand how to define interaction sequences and create the user interface

structure.

 Define task-related interaction sequences

Interaction sequence

The translation of dialogue steps specified in the interaction specification for each task into

a sequence of interactions in a logical order in the user interface. If necessary, an interac-

tion sequence will have multiple views which together represent the user interface structure.

The interaction sequence enables users to complete a task effectively and efficiently across

all dialogue steps specified in the interaction specification.

For the translation of dialogue steps into interactions, the designer must decide which use

scenarios to implement. For each supported task, the designer needs to

• sort the task objects structured in the information architecture along the sequence of dia-

logue steps, considering task objects and their interrelationships

• create the interactions and action sequences needed in the user interface for the user to

effectively and efficiently work along the sequence of dialogue steps

• visualise the resulting interaction sequence.

 Visualise interaction sequences

The chosen interaction sequences must be visualised for evaluation with users and stake-

holders. The designer must make design decisions about the views that need to be provided

(as well as the connection paths between views) and any forms of user assistance, for each

interaction sequence to be visualised.

View

A composition of all the user interface elements perceived by the user in one specific tem-

poral context (for example, at one point in time), representing one or more task objects. A

view can also be a screen or a page.

The resulting views for each interaction sequence must enable the user to complete a task

effectively and efficiently.

For the visualisation of each interaction sequence, the designer will

Conceptual
Modelling

Information
Architecture

Interaction
Design

Interface
Design

Information
Design

Sensory
Design

Figure 21 Design activity: Interaction
design

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 69 of 132

• use placeholders that represent task objects including information and signposts to exe-

cutable functions

• arrange placeholders into a view or a sequence of views and determine how users will

interact with them in order to work through the sequence of dialogue steps

• if possible, create multiple versions and variants of a visualisation for an interaction se-

quence

• test views for task-related interaction sequences with users and subsequently refine the

interaction sequences

• repeat the procedure for every single interaction specification and its corresponding inter-

action sequence, aiming to re-use as many views as possible

• if necessary, adjust views or add new views in order to support the completion of all

tasks.

Sometimes, it is possible to fit an interaction sequence into a single view.

Example: one view which represents two task objects

Figure 22: An interaction sequence in one view

If an interaction sequence does not fit in one view, the interaction has to be designed across

multiple views.

Example:

Figure 23: Interaction across a row of (three) views

It is helpful to use simple visualisations (such as the above sketches) for each task-related

interaction sequence. The interaction design does not yet determine how the system looks.

Instead, it focuses on the logical sequence of views for an effective and efficient interaction

task object „ticket“

task object „travel connection“

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 70 of 132

through the necessary dialogue steps. Using visualisations can lead to modified design deci-

sions for interaction sequences.

 Structure the user interface based on all required views

By visualising task-related interaction sequences for all interaction specifications or use sce-

narios, the designer creates the views necessary in the interactive system for the user to

work on their tasks and achieve their goals. The sum of all views and the connection paths

between them makes up the user interface structure.

User interface structure

The arrangement of all views of the interactive system that enable users to perform their

tasks.

An iterative refinement and adaptation of the user interface structure may be necessary, es-

pecially with the increasing number and complexity of interaction specifications or use sce-

narios involved. The designer has to make design decisions and, by considering the results

of the context of use analysis, the trade-off between the number of views and the complexity

of each view.

Walk-up-and-use-systems require views with low complexity so that users can find their way

to the next step of an interaction without explicit learning effort. These systems prefer a

greater number of views with less complexity over fewer views with more complexity, and

sometimes they even provide just one interaction sequence for the whole sequence of views.

Systems for experts on the other hand very often include interaction sequences for a larger

number of use scenarios in one or a small number of views. This leads to views of higher

complexity, reducing the necessity for navigation through views and minimising a “loss of

context”.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 71 of 132

3.3 Make design decisions tangible to get feedback

The creation of design solutions is a process, where visualisations of drafted solutions are

iteratively improved through feedback from evaluation with internal and external stakehold-

ers, including users. Visualisations are work products that can be described in a differenti-

ated way based on various characteristics.

While iterating design solutions, designers create visual work products with different levels of

detail: Simple sketches, wireframes, wireflows, and low- and high-fidelity prototypes.

They all help to make design decisions visible for communication and evaluation. Scope and

complexity can be tailored to the current design phase.

Guidelines for creating low-fidelity prototypes as well as criteria for choosing appropriate pro-

totyping tools are given.

Learning Objectives

3.3.a Understand the differences between sketches, wireframes, wireflows, and the dif-

ferent types of prototypes.

3.3.b Understand the benefits of visualising design decisions in sketches, wireframes,

wireflows, and prototypes, early and continuously throughout all design activities.

3.3.c Be able to visualise and describe task-related interaction sequences based on a

set of wireframes.

3.3.d Know the criteria for selecting prototyping tools.

 Characteristics of visualisations across design phases

A variety of visualisations can be created throughout the design process. Depending on the

size of the project and the people involved, designers may decide to iterate using anything

from one to many kinds of visualisations.

Visualisations have different characteristics that are suitable within a specific design phase or

for a certain purpose. The following dimensions help to decide which visualisation will best fit

the intended use.

The characteristics that differentiate visualisations are,

• The phase in the design process that the product is created and used in

• First drafts

• Refined design.

• Appearance and detail: What does the visualisation look like at first glance? During the

design process, the appearance becomes more detailed and real, resulting in more time

and effort needed for creation.

• line drawings

• structurally-arranged line drawings

• a handcrafted dummy based to an extent on detailed line drawings

• a very detailed screen view with interaction.

• Closeness to final product: How close is the experience with the work product to the ex-

perience with the final product? In earlier phases of the design process, the experience of

work products often cannot be compared to the real product at all. Further into the pro-

cess, the experience becomes closer and might be hard to distinguish from the real thing.

• Typical purpose: What is the main reason for creating the visualisation?

• For rapid internal iteration: Draft multiple ideas per view

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 72 of 132

• For internal iteration: Draft a rough layout of a view, draft a navigation structure using

the rough layouts

• For internal and external evaluation: Draft a screen design (placement of elements),

visualise the detailed screen design.

• Recipient: Who is the visualisation addressing? During the design process, the recipients

may be the UX team, the interdisciplinary project team, business stakeholders, or devel-

opers, but they can also be external: for example, potential users or client representa-

tives.

• The number of views represented in the visualisation, i.e., how many views are included

in one visualisation? In earlier phases, often just a single view is included, but later in the

process, work products often comprise more than one view.

• The number of variants of the visualisation: How many different versions of the visualisa-

tion are created? In earlier design phases, often a lot of variants are drawn, evaluated,

and discarded. As the design process proceeds, typically the number of variants goes

down.

• Interactivity: Does the work allow simulation of use scenarios or include interactivity? If

more than one state of a view is included, and the transition from one state to the next is

visualised or if the visualisation is even “clickable”, it should allow a simulation of its use.

• With or without navigation structure: If more than one view is included and the transition

from one to the next view is visualised, the work product should include a navigation

structure.

The following section describes the typical types of visualisations. Table 12 on page 75 sum-

marises the characteristics that differentiate them from one another.

 Typical types of visualisations

Sketch

A short-lived work product for the designer’s use or for rapid team-internal iterations of first

solution ideas in Early design that is used in preparation for other work products. It is a

quick line drawing, usually created by hand. It comprises placeholders for content areas of

just one view but is drawn in many variants.

Designers might produce a great variety of sketches to

quickly try out ideas and in this process, learn about and un-

derstand user needs, user requirements, and the intended

use of the system. Most of the sketches are quickly discarded

and replaced by new ideas.

Figure 24 Sketch

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 73 of 132

Wireframe

CPUX-F Definition

A screen or page in a low-fidelity prototype for a graphical user interface, comprised of

lines, rectangular boxes, and text that represent the intended interaction design.

A work product for internal validation of a single view in the First drafts phase. It’s a line

drawing, either created by hand or using software.

It shows a rough layout of just one view, possibly in several variants, and helps the internal

team and stakeholders decide on the main direction for further development of the solution.

Wireframes comprise placeholders for user interface elements as

needed.

A wireframe shows a rough layout of one view, possibly in several

variants to help the internal team and stakeholders to decide on the

main direction for the further development of the solution.

Wireframes are most often the product of some thought and under-

standing of user needs for a single view. Sometimes a few variants

are created that represent different approaches for the solution.

They are more elaborated in terms of layout and details than sketches and are often used as

the basis for low-fidelity prototypes [JaMe2017].

Wireflow

A work product for internal validation of the system’s navigation structure in the First drafts

phase. It consists of several wireframes that show the interaction with the intended design

solution and helps to iterate the navigation structure of a drafted solution.

In a wireflow, multiple wireframes are arranged in a task-re-

lated order to demonstrate future transitions from one

screen to another. An iterated and evaluated wireflow may

serve as a basis for the subsequent creation of a low-fidelity

prototype.

Prototype

Prototypes fall into two types: low-fidelity prototypes and high-fidelity prototypes.

CPUX-F Definition

A representation of all or part of an interactive system that, although limited in some way,

can be used for analysis, design, and usability evaluation.

Figure 25 Wireframe

Figure 26 Wireflow

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 74 of 132

Low-Fidelity prototype

It is based on preceding work products and advances them. In the First drafts phase its pur-

pose is for internal and external evaluation of the draft system’s screen design. It is a hand-

crafted or digital visualisation, often based on wireframes that resemble the product and in-

clude one or more views containing detailed content as required.

CPUX-F Definition

A low-cost, simple illustration of a design or concept used to gather feedback from users

and other stakeholders during the early stages of design.

Low-fidelity prototypes are often the product of many iterations and a lot of internal feedback.

They are typically based on evaluated wireframes and wireflows and show a comparatively

advanced layout to wireframes. They are presented in a more detailed screen design and

show some resemblance to the final product.

Low-fidelity prototypes should precede the creation of high-

fidelity prototypes. A variant of low-fidelity prototype is a pa-

per prototype, which may be a creatively handcrafted ver-

sion of the intended product for users to try out [Buxt2007].

The “Wizard of Oz” prototype variant is used in situations

where user inputs are unpredictable. The highly flexible re-

actions of the system (prototype) are simulated by a human

working as a hidden operator. “Wizard of Oz” prototypes are useful when design ideas are

still wide open and they help to understand how users behave naturally and what they expect

from the system [HaPy2019].

High-fidelity prototype

A high-fidelity protoytpe is a sophisticated work product for the evaluation of the user experi-

ence of the system’s screen design in the Refined design phase. It is a digital representa-

tion, usually created in only one version that resembles the product closely and may contain

any number of detailed views, and includes interactivity and a navigational structure.

CPUX-F Definition

A software prototype of the user interface to the interactive system that is being designed.

A high-fidelity prototype more closely resembles the finished interactive system.

High-fidelity prototypes encapsulate the pre-final stage of

the layout and sensory design decisions of a solution when

the interface is very close to supporting all of the agreed

user tasks in a design project.

There are “vertical” or “horizontal” high-fidelity prototypes,

depending on whether they support drill-down interactivity

(depth) or dip-in exploration of a menu or navigation structure (width).

For the work products introduced so far, various names might be used in different contexts. A

frequently-used term for some or all of these work products is mock-up. The term mock-up is

not defined in this curriculum.

Figure 28 High-fidelity prototype

Figure 27 Low-Fidelity Prototype

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 75 of 132

Table 12 Types of visualisations and their characteristics (key characteristics are highlighted in bold)

 First Drafts Refined Design

Type of visualisation Sketch Wireframe Wireflow Low-fi prototype High-fi prototype

Typical purpose

of work product

To draft, discuss and

discard rapid iterations

of first ideas, in prepara-

tion for other work prod-

ucts

To iterate rough layouts

of a single view for inter-

nal validation

To evaluate interaction

sequences and naviga-

tion structure, internally

To evaluate screen de-

sign with users and other

stakeholders

To evaluate screen de-

sign and user experi-

ence with users and

other stakeholders

Appearance and detail

Hand-drawn, line-based

illustration, with place-

holders for view areas

Hand- or digital-drawn,

line-based illustration,

with placeholders for

user interface elements

and content (as needed)

Structurally arranged

wireframes

Handcrafted or digital

representation of all, or

parts of, the final prod-

uct, with content as re-

quired

Digital representation of

all, or parts of, the final

product, with detailed

content

Resemblance to

the final product

No resemblance No resemblance No resemblance Some resemblance Close resemblance

Intended for use by Designers and their

team

Design team; stakehold-

ers

Design team; stakehold-

ers

Design team; stakehold-

ers; users

Stakeholders; users

Number of views

per work product
Number of views One

One

More than one

Any, depending on

the interactive sys-

tem and the purpose

Number of variants per

work product

Many One or more

Typically one or very

few

Typically one or very

few
Typically one

Interactivity
No No No Yes – whatever is nec-

essary for evaluation

Yes – whatever is nec-

essary for evaluation

Navigational structure None None Yes
Yes – whatever is nec-

essary for evaluation

Yes – whatever is nec-

essary for evaluation

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 76 of 132

 Benefits of visualising design decisions early and continuously

The early and continuous use of visual work products in the design process is key for the it-

eration of first drafts, through refined designs to the eventual solution.

The different types of visualisations allow the designer to tailor their use according to the de-

sign phase the project is currently in.

The benefits of using visual work products are that

• in the First drafts phase, they are simple, fast, and cost-effective visualisations

• they allow for the quick use and disposal of work products

• they are a means to generate a great variety of ideas, even seemingly unpromising ones

• they are a means to gain a better understanding of the user needs and therefore the de-

sign project as a whole

• they are a means to work on early drafts in interdisciplinary teams

• they are a means to quickly present ideas for communication with different stakeholders

and users

• they are a means for stakeholders to propose changes and add new ideas.

In the Refined design phase, narrowed down visualisations help

• facilitate effective stakeholder discussions and efficient user feedback (surveys, feedback

gathering, and usability testing)

• efficiently uncover needs for adjustments

• facilitate quick re-testing of an improved visualisation

• facilitate the documentation of design decisions

• facilitate the specification of the eventual solution.

 Iterating visualisations through evaluation

The primary purpose of creating visualisations for the intended solution is to improve them

iteratively, through feedback. Depending on the design phase and the level of detail of the

work product, feedback is gathered from different groups of people using different methods.

The first sketches may be iterated through informal feedback within the design team. The

feedback at this stage centres around the most basic assessment, “can this work at all?” This

way, the designer or the design team improves and narrows down ideas to a reasonable set

of variants which they can follow up on. These might then be visualised in wireframes.

Wireframes and wireflows can be iterated through informal feedback from within the design

team or from business stakeholders. At this stage, the leading question for wireframes is

“which variant of solutions do we want to pursue further?”, whereas for wireflows, it is “does

the navigation structure seem reasonable?” Users may be involved at this stage, especially if

more elaborate work products will not be created in the design project.

Low- and high-fidelity prototypes are often iterated through formal feedback from evaluations

with stakeholders and users.

 Guidelines for creating low-fidelity prototypes

Low-fidelity prototypes are often based on wireframes and wireflows that are either hand-

drawn or created digitally. In the creation of a low-fidelity prototype, the designer should fol-

low a sequence of steps:

1. Gather all UX deliverables for the intended solution that were established so far in the

design process. These may include,

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 77 of 132

a. an interaction specification

b. a possibly adjusted task model for design

c. derived task objects

d. enhanced task objects

e. structure across all detailed task objects.

2. Ensure the application of applicable user interface guidelines represented in, for exam-

ple, ISO 9241-110, heuristics, design patterns, or style guides. Also see Chapter 6.2.

3. Depending on various factors like efficiency, required portability, personal ability, or com-

pany standard, decide whether to use hand drawings or digital tools for the creation of

the prototype.

4. Create one wireframe per view, each including details and interaction elements as

needed.

5. In the case of a paper prototype, use cut-outs and handcrafted materials to turn a hand-

drawn prototype into a paper prototype, showing the interaction inside each view.

6. Discuss the low-fidelity prototype with team members and gather internal feedback in or-

der to optimise the prototype by internal iteration.

7. Annotate the wireframes to explain the user’s flow through the views. Also see Chapter

6.46.4.3.

 Quality criteria for creating low-fidelity prototypes

• Work in a team: Internal discussion and iteration of the drafted solution will improve de-

sign decisions.

• Avoid concentrating on content or interaction details that are not necessary for the design

task.

• Avoid showing any visual design – like colours or fonts – that is not necessary for the de-

sign task.

• Verify the created visualisation against all information available from the context of use.

Common methodical mistakes when creating visualisations of interaction sequences include,

• skipping internal iterations

• choosing an inappropriate level of fidelity for the visualisation

• concentrating on too much detail

• emphasising aspects of visual design

• skipping the comparison of the visualisation with information from the context of use.

 Criteria for selecting prototyping tools

Even though visualisations can be drawn by hand or built using handcrafted materials, often

digital prototyping tools are used. Prototyping tools in the form of software allow for fast crea-

tion of improved versions, as well as comprehensible documentation of design decisions.

With access to prototyping tools it can be tempting to create unnecessarily mature work

products that include a lot of detail and unnecessary interactivity. As a general rule, the fol-

lowing can be said: The selection of the prototyping tool and the degree of maturity of the re-

sulting work product should reflect the current design phase, the purpose of the visualisation,

and the amount of time available for its creation.

The criteria for selecting the appropriate prototyping tools for a work product are as follows:

1. The tool must support the required level of fidelity of the work product.

2. The tool should ideally provide modes to create work products with varying degrees of

fidelity, from hand-drawn screens to the appearance of a finished product. The tool

should at least provide the level of fidelity needed for the design project at hand.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 78 of 132

3. The system must support the required experience of the solution for users and other

stakeholders. In some cases, the recipient is supposed to have an interactive experi-

ence; sometimes the focus is on the appearance of a system, and in other cases, an ex-

tensive experience of task completion (in depth) is required.

Example: Some tools allow the designer to link photographed sketches together for

display on a stakeholder’s mobile phone, and so provide a realistic use experience

with minimal effort.

4. The system should support the required documentation of design decisions in the work

product. Some tools provide the means to annotate or create a specification out of the

work product. Some prototyping tools support both communication to stakeholders and

documentation. For documentation, it is important to

• annotate work products

• document conventions (syntax)

• ensure traceability to the UX deliverables that served as input – even at a later point in

time

• document considerations, variants, as well as the advantages and disadvantages of

certain decisions.

5. The system may support the documentation of evaluated user interaction with the work

product. Some prototyping tools provide screen and voice recording or mouse-click and

key press tracking, in test sessions with users.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 79 of 132

4 Refined design

In interface design, user interface elements are selected, arranged, and combined, and their

behaviour is defined. In information design, the designer ensures the comprehensibility and

consistency of all meaningful information of the user interface. In sensory design, designers

focus on the perception of relevant sensory channels.

4.1 Design activity: Interface design

Interface design deals with design decisions regarding the

selection, arrangement, behaviour, and combination of user

interface elements for all screens, views, or pages.

While creating interfaces for devices of different sizes, the

designer must decide on the dynamic or static arrangement

of user interface elements using development approaches

such as responsive design or adaptive design. Mobile-

first is an important design objective. The application of user

interface guidelines contributes to effective, efficient, and sat-

isfying user interfaces.

Learning Objectives

4.1.a Understand how to select and adapt user interface elements, their combination, ar-

rangement, and behaviour on each individual view.

4.1.b Know how to decide on the dynamic or static arrangement of user interface ele-

ments.

4.1.c Understand that applying user interface guidelines for selecting, arranging, and

combining user interface elements supports effective, efficient, and satisfactory in-

teraction.

 Create the interface design by selecting, arranging, combining, and de-

fining the behaviour of user interface elements

User interface element

CPUX-F Definition

A basic component of a user interface that is presented to the user by the interactive system.

User interface elements have to be selected, arranged, defined regarding their behaviour,

and combined depending on the user’s tasks and with regard to meeting user requirements.

Before the designer selects user interface elements, they have to answer two questions:

• How must user interface elements be combined and arranged, so that the relevant task

objects and executable functions are perceived and understood by the user?

• Which user interface elements correspond to the prior knowledge, experience, and ex-

pectations of the users?

Conceptual
Modelling

Information
Architecture

Interaction
Design

Interface
Design

Information
Design

Sensory
Design

Figure 29 Design activity: Interface
design

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 80 of 132

 Select, arrange, and combine user interface elements

User interface elements must be selected, combined, and arranged according to the content

and purpose so that the user can find them at the right moment within the interaction and use

them to achieve their goal.

Example: In image processing, many user interface elements are used, such as the

toolbar, individual buttons, or sliders.

The “slider” user interface element is suitable for ad-

justing the brightness, contrast, and saturation of an

image.

The combination of a slider, caption, and input field

must allow the user to perceive these user interface

elements as belonging together for the processing of

the tasks “Adjust brightness” or “Adjust contrast”.

If suitable UI elements have been selected, combined, and arranged, the designer must also

define the behaviour of the elements, for example, the duration of opening an element or the

change of colours when changing the state.

 Decide on the dynamic or static arrangement of user interface elements

Rather than creating separate websites or apps for wide-screen monitors, desktops, laptops,

tablets, phones and smartwatches of all sizes, a single codebase can support users with dif-

ferent size viewports.

Examples of responsive design include

• page elements are reordered as the viewport grows or shrinks. A three-column desk-

top design may change to two columns for a tablet and a single column for a

smartphone.

• horizontal lists of links are converted into drop-down menus.

• font sizes are adjusted.

• images are resized rather than cropped, or different images are displayed depending

on the viewport size.

• secondary elements, such as supplementary navigation, are hidden on small view-

ports.

Rather than creating a single, fluid layout that adapts to changes in screen width, static lay-

outs are created at key ‘breakpoints’ so that the layouts can be optimised for those specific

widths.

It is common to design for the following screen widths in adaptive design: 320, 480, 760, 960,

1200 and 1600px.

Responsive design

A development approach that results in dynamic changes to the appearance of a website or

an app, depending on the screen size and the orientation of the device used to view it.

Adaptive design

A development approach that employs several static, tailor-made layouts.

The appropriate layout is selected and displayed based on the screen width of the device

used to view it.

Figure 30 Typical user interface elements

used for image processing

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 81 of 132

Adaptive design can be a useful approach for making existing desktop sites ‘mobile-friendly’,

as the additional layouts can be created without affecting the existing site.

Adaptive design allows designers to incorporate functionality, data, interaction methods and

features, native to the user’s device and its operating system.

Examples: swipe gestures, behavioural targeting, use of the camera and microphone,

GPS, and biometric authentication on mobile.

Some key differences between adaptive and responsive design are:

• responsive design provides a uniform layout across all screen widths.

• adaptive design provides greater control for designers, allowing designers to optimise

their design for each screen width.

• responsive design has only one core layout so takes less work to build and maintain.

• adaptive design is more labour-intensive, as designers need to build and maintain several

layouts

• responsive design is fluid and so fills all the gaps that adaptive design would leave; how-

ever, responsive sites can behave in an unpredictable manner when resizing the screen,

as elements move around the screen.

• adaptive design only accommodates the screen widths you have designed for

• responsive websites require sending all the code that generates the layout at all widths to

the client, so they can be slower to download and respond, especially on low-bandwidth

connections and less-capable devices.

• adaptive websites only require the code for that specific layout so they can be a lot

quicker to download and respond – often 2 to 3 times faster than responsive websites.

To support an informed decision about static or dynamic design, ”Mobile first” is an important

design approach:

 Appropriate use of user interface elements

As a decision-making aid for the use of suitable user interface elements, guiding questions

help to clarify what the respective interaction task is about, which user interface elements are

available, when they are used, which design guidelines are to be taken into account, and

how the elements are arranged or combined appropriately.

Before the designer considers a new user interface element, they should research whether a

suitable solution for the concrete case already exists. Only if no suitable user interface ele-

ment for a problem exists must it be adapted or newly created.

1. Type of interaction: What is it about?

• Data input

• Data selection

• Data display

• Execution of commands

• Grouping of contents.

2. Which user interface elements are available for this interaction?

• Examples of data input: Input field, dialogue box, calendar picker

Mobile-first

An approach in which the version that is optimised for mobile devices – in other words,

smaller screens – is created first, and extensions for bigger screens (for example, desktop

application) are designed later.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 82 of 132

• Examples of data selection: dropdown, radio buttons for single and check boxes for

multiple selections.

3. In which cases do you use a certain user interface element? For example,

• input field: The system requires information from the user that cannot be presented as

a pre-defined option.

• dialogue box: Explicit decision, action, or data entry is required.

• calendar picker: A single date must be chosen by the user.

4. Which design guidelines are to be applied for the selected user interface element?

Example for a calendar picker:

• The month and year should be selectable independently from each other.

• Local cultural date conventions should be observed during the implementation.

• Users must be provided with the ability to set a preferred date format.

5. How should user interface elements be combined and arranged?

• Arrange groups of user interface elements as expected

• Group elements with similar content together

• Make dependencies visible

• Support the natural flow of reading

• Display states correctly.

The consideration of these key questions and the application of corresponding user interface

guidelines enable the designer to make appropriate design decisions that lead to the design

of effective, efficient, and satisfying user interfaces.

[ISO 9241-161] contains guidelines for the use of user interface elements as well as an over-

view of typical user interface elements, including a description of possible states, compo-

nents, and additional notes for the application.

Selecting user interface elements in accordance with user’s expectations, previous

knowledge, and experience is becoming increasingly important, as there are more and more

people who (must) have regular access to a wide variety of interactive systems. The selec-

tion of terminology, visual language, symbols, and recurring user interface elements must be

consistent with elements commonly used (within the interactive system, or within a product

family or platform, such as an operating system).

Example: Typical mistakes when selecting user interface elements

Incorrect Selection Correct Selection

The use of checkboxes allows the user to

select multiple options. The user interface

element checkbox is not suitable in this

case, because the user can answer both

yes and no to the same question.

The use of radio buttons allows the user to

select only one option. The radio button is

suitable in this case because the user has

to decide whether to answer yes or no to

the question.

Figure 31 Typical mistakes when selecting user interface elements

Example: Typical mistakes when arranging user interface elements

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 83 of 132

Incorrect Arrangement Correct Arrangement

The “Ticket selection” command button is

designed to only be visible at the top of

the train connection. In order to select an

offer, users have to scroll back up after

they have scrolled down to read all route

information.

The “Ticket selection” command button is

configured so that it is always visible and

can be selected regardless of the scroll po-

sition.

Figure 32 Typical mistakes when arranging user interface elements

Example: Typical mistakes when combining user interface elements:

Incorrect Combination Correct Combination

The input box for users to specify the

scaling factor has been arranged in such

a way that the relationship between the

radio buttons and the caption is no longer

clear.

The user interface elements are arranged

correctly so that the relationship between

the radio buttons, the caption, and the in-

put box is clear.

Figure 33 Typical mistakes when combining user interface elements

Important characteristics of human perception must be considered in interface design to en-

sure that the user interface elements are perceived as a whole. Furthermore, attention must

be paid both to internal consistency (uniform use of user interface elements within an appli-

cation) and external consistency (uniform use of user interface elements across different ap-

plications). The use of style guides and design pattern supports these goals.

Example:

The “slider” element of the user interface is sufficient for an occasional user to adjust the

brightness of an image during image processing. Sliders work best when the exact set-

ting is not important. A professional photographer may need an input field rather than a

slider, so they can set an exact brightness value.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 84 of 132

4.2 Design activity: Information design

The purpose of Information design is to make information in

the user interface meaningful and comprehensible. In addi-

tion to conformance with the principles for the presenta-

tion of information, the process of reading of information

must also be considered. Users often read digital content

according to the reading scheme “F”. Frequently, this re-

sults in a loss of information that can be avoided by using

the inverted pyramid approach. Other specific guidelines

help the designer prepare and structure content in a clear

and comprehensible way.

Learning Objectives

4.2.a Understand the principles for the presentation of information

4.2.b Understand how reading of information and comprehension of digital content can

be supported using the inverted pyramid approach in order to consider the reading

scheme “F”

4.2.c Know the rules for simple language

4.2.d Know the basic guidelines for the use of colours, graphics, images, and symbols in

terms of comprehensibility

 Principles for the presentation of information

Information design aims to facilitate perception and understanding of information by reducing

the cognitive effort required to assimilate and process the information [RoCa2002].

The principles for the presentation of information serve to support the information’s self-de-

scriptiveness and conformity with user expectations.

Principles for the presentation of information

Principles whose application in the development of user interfaces ensures good usability

and a positive user experience from the viewpoint of presenting the information.

Considering these principles in the design of an interactive system ensures that users can

handle content in an efficient, effective, and satisfactory way. [ISO 9241-112] “Ergonomics of

human-system interaction – Part 112: Principles for the presentation of information” formu-

lates six principles for the presentation of information that apply across the sensory channels

(for example, visual or auditory). In addition, [ISO 9241-125] contains many user interface

guidelines for the presentation of visual information.

Conceptual
Modelling

Information
Architecture

Interaction
Design

Interface
Design

Information
Design

Sensory
Design

Figure 34 Design activity: Information
design

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 85 of 132

Table 13 Principles for the presentation of information

The principles detectability and freedom from distraction and distinguishability specify the de-

sign of information to support user's reading of information. The principles interpretability,

conciseness, and consistency ensure the comprehensibility of information.

Principle Definition and Example (further examples can be found in ISO 9241-112)

Detectability Presented information is detectable if the information is presented so that it

will be recognised as present.

Example: A prominent headline (large font and prominent placement in

the upper centre) with a supporting image allows readers of a newslet-

ter to quickly see what this short text is all about.

Freedom from

distraction

Information is free from distractions if it is presented so that the required in-

formation will be perceived without other presented information interfering

with its perception. Distractions from a user’s point of view can result from

both distracting events and information overload.

Example: Playing a video, the website automatically adjusts the con-

trast of the background to avoid distracting users from the video.

Distinguishabil-

ity

Information is distinguishable if it is presented such that discrete items or

groups of items can be accurately differentiated, and the items of infor-

mation are presented in a manner that supports their association with or

differentiation from other items or groups of items.

Example: On a news website, different menu levels are designed in dif-

ferent colours to clearly distinguish them from each other.

Interpretability Information is interpretable if it is comprehended as intended.

Example: Supporting images for each category name of an online shop

clarify the content of the categories.

Conciseness Information is concise if only the necessary information is presented.

Example: On a website menu for booking tickets for events, various

subcategories can be selected step by step as additional menu items.

So, the user does not get too much information at once.

Consistency

(internal and

external)

Information is consistent if items of information with similar intent are pre-

sented similarly and items of information with different intent are presented

in a different style and form, within and across the interactive systems and

the user’s environments.

Example: A link named “Help” on a Web page takes the user to a page

titled “Help” rather than to a page named “Information”.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 86 of 132

 Information reading and comprehensibility of content

 Step-by-step reading of information

Reading of information

An interplay of three ways for capturing content:

1. Scanning: User’s attention during task completion is guided by the content

2. Skimming: Scanned contents are systematically passed over to get their gist

3. Reading: If a skimmed piece of content is recognised as helpful for task completion, the

user reads its information systematically and completely.

Scanning phase: During the scanning phase, the user’s attention is primarily directed to-

wards the characteristics of the content. These are broadly scanned, and key information

(headings, links, images) is noted and digested. A large amount of information needs to be

dealt with. The user’s attention is not systematically controlled, and information is processed

at a relatively superficial level.

Skimming phase: The content that has been scanned is now skimmed to get a rough under-

standing of the content and arguments. The reading speed decreases and the amount of in-

formation to be systematically assimilated increases.

Reading phase: The third phase involves actual reading. The user decreases the information

reading speed again and begins to systematically and comprehensively assimilate the pre-

sented information. Attention no longer hovers but becomes focused.

In order to process information, users need to rate the content according to how relevant

they think it is for their task completion. Therefore, information needs to be structured and ar-

ranged in such a way that the user can quickly identify which information is of relevance dur-

ing the hovering attention phase (scanning and skimming).

 Supporting reading of information for digital content

Users assimilate digital content differently to printed text as they usually prefer to scan it.

Reading schemes describes this process.

Examples of reading schemes are,

• F-reading scheme (starts top left, scans to the right side for keywords, starts again top

left, scans the left down, scans the centre)

• Z-reading scheme (starts top left, scans to the right, scans across the mid-point to the

bottom left, scans to the right)

• Central before peripheral (starts in the centre, moves to the peripheral)

The reading of digital text usually follows the “F” reading scheme. The user generally notices

the right-hand side of the screen only if there are interesting stimuli.

The reading scheme “F” is neither optimal for users nor for conveying information, because

information can easily be missed out. As content is displayed differently on various devices in

responsive design, the content assimilated by the user using the “F” reading scheme differs

according to the device they are using [Pern2017].

Reading scheme

A pattern describing the typical chronological order in which users place their attention on a

page. The intended reading scheme for a page or set of pages depends on the basic layout,

the design guidelines followed, and the extent to which single user interface elements get

the user’s attention on the page.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 87 of 132

When the main area of a page mainly consists of text, structuring information in accordance

with the inverted pyramid approach improves the user’s understanding of digital text. It di-

rects the user’s attention to the most important information more effectively and avoids infor-

mation getting lost due to the “F” reading scheme.

Inverted pyramid approach

A guideline for the structuring of information within a text which states that the most im-

portant (often summarising) information should be placed at the beginning of the text, fol-

lowed by supporting details and background information.

The inverted pyramid approach dictates the optimum way to structure information, to improve

users’ understanding of digital text:

1. Begin with the essential information

2. Follow with details and background information

3. Write in a concise way that is easy to understand

4. Identify your key messages and ensure they are clear

5. Sort your information according to relevance

6. Add summaries or highlight the most important points.

The inverted pyramid approach improves the comprehensibility of digital text, saves the

user’s resources (time and cognitive effort), helps the user to scan the text, and encourages

them to keep reading [Scha2018].

 Ensuring the comprehensibility of text with the rules of simple language

In particular, digital text must be prepared linguistically and stylistically according to the rules

of simple language to make it easier to read [Mose2012, NiLo2006]:

Linguistic Level

• Use precise and meaningful headings

• Use short, simple sentences

• Choose objective, informative, and positive phrases

• Be consistent with the choice of words and sentence structure

• Gear the language towards the user

• Avoid incomprehensible rhetorical devices; for example, a metaphor unknown to the user

• Avoid abbreviations or in-house, technical terms, and specialist jargon

• Make the reader respond to different calls-to-action

• Use links with short and meaningful names.

Stylistic Level

• Ensure that recommended actions follow the correct sequential order

• Structure text in a logical and comprehensible way by choosing concise page headings

that use keywords to describe the content

• Structure text in a visually appealing way using headings, subheadings, images, tables,

lists, and key statements in order to make it easy to scan

• Only discuss one topic per paragraph

• Use teasers to draw attention to specific pieces of information

• Keep paragraphs short

• Never assume users’ knowledge level.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 88 of 132

 Ensuring the comprehensibility of information

through colours

Designers must follow basic rules for the use of colours when de-

signing information for interactive systems:

• Use colour sparingly and cautiously

• Match the colours used and choose no more than four main

colours, as extreme colourfulness makes the choice of colour

appear arbitrary

• Ensure a clear presentation through the high-contrast use of

colours

• Be aware that the effect of a text may depend crucially on the

colours used (For example, to draw attention to a use error

and ensure its perception, the error text is displayed in red ra-

ther than in black or dark grey).

• If a colour has been assigned with a purpose or function within the interactive system,

use it only for this purpose. It is possible to work with colour gradations instead.

• Be aware of colour conventions regarding colour coding, colour standards, or different

cultural interpretations of meaning for colours.

• Never rely on colour alone to convey information. Users with colour blindness are unable

to differentiate between certain colours. Based on culture, mental models, and interpreta-

tion, users may assign meaning to colours that was not intended by the designer. The

most appropriate solution to conveying information is always to use text and support that

information with colours and/or shapes.

Example for colour coding: In an app, the user sees a train connection. There are two col-

ours used in the connection details: red and green. In this combination, red could be in-

terpreted as bad and green as good. Red indicates that the train will be very busy, while

green indicates a low occupancy. Users with colour blindness may not be able to differen-

tiate between the two colours.

 Special features of language and images in terms of comprehensibility

In general terms, it is preferable to communicate information by linguistic means (text) rather

than in a graphical way (images) because linguistic means are a particularly popular way to

convey information and enable complex messages to be conveyed. Furthermore, linguistic

means are less likely to be misunderstood compared to icons or other non-linguistic means.

Therefore, the comprehensibility of icons can be supported using additional linguistic means

[Ware2004].

Example: The floppy disk symbol represents the function “Save”. An additional label be-

low the icon with the text “Save” supports its comprehensibility.

Graphical representations (images) offer advantages, too. They can be captured and under-

stood at a glance, while text must be decoded (read).

Images can convey more emotionally-intense messages. Visualisations and graphical repre-

sentations are well-suited to conveying metaphors visually. A combination of graphical repre-

sentation and textual label is often advisable.

During the design process, it is important to determine which of the different ways of present-

ing information supports information transmission most effectively.

Figure 35 Example of colour
coding

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 89 of 132

Table 14 Ways of presenting information

Images (static) are suitable for describing Language is suitable for describing

• spatial structures

• impressions of a place

• specific details

• structural relationships of information.

• extensive instructions relating to specific

procedures

• information based on logical relations

• abstract verbal concepts

• specified conditions.

 Specific design recommendations for comprehensibility

 Structuring information sets

Using information models (for example, information architecture) ensures that information is

organised in an appropriate and comprehensible way. They represent information and the

relationships between different types of information, which helps to communicate volumes of

data and complex functionalities. Building information models relies on structuring infor-

mation sets with the following basic rules:

• Make sure subordinate information can be understood by the way the superordinate infor-

mation communicates it

An example of not applying this rule: If the title does not explain the subordinate con-

tent appropriately, the user does not know what kind of content is included in this unit

of information.

• Help the users orientate themselves by structuring the information to maintain a general

overview of it

An example of not applying this rule: A table with numerous sub-items in which the

more detailed content is structured into very small units obstructs users from navi-

gating through the information.

• Use the concepts that correspond with the user’s mental model to avoid any confusion

An example of applying this rule: Headings are generally placed above the text and

are set apart using style and/or colour. Deviating from this mental model can cause

the user to lose orientation.

• Ensure the user can get an initial overview by headings

• Make it easy for the user to filter information

• Group related information together.

 Providing consistency

Consistency in terms of style, size, colour, and position across different applications reduces

the cognitive load of the user during information reading.

Consistency improves the ability to recognise information and enables a more effective and

efficient interaction. But it can potentially impede performance when processing tasks be-

cause presenting information consistently can prevent the optimal positioning of other essen-

tial items of information.

An example of a problem with consistency: The company logo is always placed on the

top left-hand side of the screen, making it easy for the user to find it. However, this pre-

vents other elements from being placed flexibly, for example, the positioning of menus.

Consistency can be differentiated into internal (within the application) and external (between

applications) (also see 4.2.1).

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 90 of 132

Example of internal consistency: The colours used for design remain the same on every

page of a website.

Example of external consistency: The colours used for design remain the same on both

the desktop and the mobile versions of a website.

Every design decision that has been made for information design must be applied consist-

ently to all content. The designer should use a content inventory for this purpose. It helps

keeping track of all content to be designed and contributes to consistent design.

 The Use of real-world metaphors to support comprehensibility

Metaphors are equivalents from the real world. The fact that metaphors relate to the real

world can help the user understand the information contained on the user interface more ef-

fectively and efficiently, if they are utilised.

Example: The floppy disc symbol refers to a medium that was historically used to store

data. The function of saving data can be communicated using this symbol.

The used metaphor must be understood by the user during interaction. Otherwise, it can lead

to misunderstandings and input errors.

Example of metaphor changing over time: In order to understand the meaning of the

floppy disc symbol, it is necessary to know that the floppy disc was formerly used to store

data. This metaphor possibly will not be understood if this information is not known.

Useful metaphors for design combine consistency/familiarity and inconsistency/innovation. If

they can be associated with the real world too easily, they hinder comprehensibility and the

way the user deals with various elements of information.

Example of negative borrowing: An online pocket calculator that looks like a manual cal-

culator helps the user understand the application. If the keypad in the digital application is

designed the same way as a manual pocket calculator, it can hinder the use of this appli-

cation because the user is used to a different kind of keypad in digital applications.

 Using images that relate to the specific situation of use

Images can help the user understand complex data more easily. Depending on the ability to

visualise task-related information, images can support the users in achieving their goals.

When selecting a suitable image form, the user requirements must always be considered. It

is therefore necessary to identify the specific requirements in a particular situation and create

an appropriate image.

Example: Displaying the location using a marker pin on a digital map for the user task

“specify your location” is more appropriate than describing the location using text.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 91 of 132

4.3 Design activity: Sensory design

Before users can recognise the meaning of information,

they must be able to perceive what is presented. If users

miss perceiving information due to inattention or due to not

being able to use the given sensory channels, the infor-

mation needed for completing the task will be missing. Ge-

stalt laws, the application of white space, and an appro-

priate layout help the designer to ensure perceptibility in

visual design.

Learning Objectives

4.3.a Understand how gestalt laws, colours, font sizes, and white space support percep-

tibility across all sensory channels.

 Design the user interface regarding its perception through relevant

sensory channels

In sensory design, the designer considers various sensory channels and ensures the interac-

tive system is perceptible.

• The sensory design goes beyond a purely visual design because perceptibility can be in-

fluenced both positively and negatively through all sensory channels (visual, auditory,

haptic, etc.).

• In sensory design, the design elements of different sensory modalities must be clearly

perceptible and distinguishable from each other.

• Some aids support visual perception, such as font size, layout, distance, and colours.

 Gestalt laws

Gestalt laws

Rules that describe how people perceive individual shapes – lines, surfaces, edges, colours

– as a single unit, due to shared characteristics such as proximity and similarity.

Gestalt laws help while considering the perceptual aspects of sensory design:

Users may be assisted in their perception and interpretation of information when task objects

and executable functions are configured together, similar in form, or given identical names.

This enables connections of meaning to be established. Conversely, connections of meaning

can be avoided by giving differing forms to objects with differing functions. A selection of ge-

stalt laws, which should be applied when designing user interfaces is described below.

Law of proximity

Objects that are close to each other are more likely to be per-

ceived as belonging together than objects that are distant from

one another.

Example:

On a route planning overview, the user can perform two

tasks: Entering the departure and destination of the trip as

well as the date and the time of the trip. The labels “From”

Conceptual
Modelling

Information
Architecture

Interaction
Design

Interface
Design

Information
Design

Sensory
Design

Figure 36 Design activity: Sensory design

Figure 37 Example: law of
proximity

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 92 of 132

and “To” and the symbols for the calendar and the clock are arranged close to the corre-

sponding input fields, making it easier for the user to recognise which field requires what

data.

Law of similarity

Elements that are similar to each other (for example, in shape,

size, or colour) are perceived as belonging together.

Example:

During the input on a login page, a use error occurs in one

of the fields. The affected field and the textual explanation of

the error are marked in the same colour, making it easier for

the user to understand the relationship of the field and text,

allowing them to address the error more easily.

Law of good form

This is also known as the law of Prägnanz,

which roughly translates to “the law of orderli-

ness and simplicity”. The brain divides objects

into structures that are as simple as possible.

Even though complicated shapes may have

more than one possible interpretation, our vi-

sion breaks them up into the simplest shapes,

as this interpretation requires the least cognitive

effort. It prevents us from becoming over-

whelmed with information.

Example:

While designing a wireframe, elements can

be arranged in blocks, rather than detailed

pictures of the actual content. This makes it

easier to organise the layout of the

wireframe. Another example is the logo of

the olympic games. Instead of seeing the

logo as a complex cloud-like shape, it is

perceived as individual rings overlapping.

Law of continuation

The human eye will prefer to see contin-

uous, unbroken paths and curves, trying

to follow it even if another object might

try to interrupt it.

Example:

Within system options, there is an option to determine when the computer should turn

itself off after being inactive. This option is realised through a slider. Even though the

slider is theoretically divided by the handle, the brain perceives the slider as a single line

instead of two lines separated by the handle.

Figure 40 Example: law of good form

Figure 41 Example: law of continuation

Figure 39 Example: law of good form

Figure 38 Example: law of
similarity

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 93 of 132

Law of closure

Incomplete, simple elements are perceived as forming familiar pat-

terns, shapes, and groups. This law is often employed on UI ele-

ments such as loading indicators, progress bars, or sliders. Many

icons and logos use this law as well.

Example:

Closure is often employed when designing loading indicators,

progress bars, or icons. Even though the shape representing the

progress is incomplete, the user perceives it as a circle. The

same applies to many commonly used icons. Despite the use of

whitespace, the icon on the right is recognised as a flashlight.

Law of common fate

Figures with similar movement characteristics (for ex-

ample, moving in the same direction, along the same

path) are perceived as one unit because they share a

common fate.

Example:

All items of a slide-out menu’s submenu open in

the same direction. Because they share this

movement, the elements appear to be related.

This is the case for each level of the submenu, leading to each submenu’s items being

perceived as a group.

 Colours, font sizes, and white space

Designers must follow basic rules for the use of colours and the consideration of colour com-

binations to ensure perceptibility.

The basic rules for the use of colours are as follows:

• The foreground colour should stand out sufficiently from the background. W3C Web Con-

tent Accessibility Guidelines mandate a contrast ratio of at least 4.5:1 for text against its

background.

• The use of good contrast ensures legibility. Especially when displays are used outdoors,

environmental light can impair contrast.

• Be aware that the use of certain RGB colours in conjunction can cause a flickering effect

as their wavelengths are close together.

Additionally: The following recommendations for usage of colours are stated in [ISO9241-

171]:

• Information should not be conveyed by colour alone.

• Colour schemes for users with visual impairments should be considered.

• Depending on the context of use, it should be checked whether the customising of colour

coding and colour schemes is necessary.

• Sufficient contrast between the foreground and the background should be provided, pref-

erably within basic settings.

Figure 42 Example: law of
closure

Figure 43 Example: law of common fate

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 94 of 132

Example: In dark mode, bright pixels are displayed as dark; dark pixels as bright. The

mode serves to protect the user’s eyes when in a dark environment (for example, at

night or in dark rooms).

Figure 44 An example of the light vs. dark mode

For increased legibility, font sizes should be customised to the user’s requirements, or should

be customisable by the user.

The following recommendations are stated in ISO 9241-171 “Ergonomics of human-system

interaction – Part 171: Guidance on software accessibility” [ISO9241-171]:

• Information should not be conveyed solely through visual font attributes.

• Users should be able to set a minimum font size.

• If the font size changes, the scale, and layout of user interface elements should be ad-

justed proportionally.

Example:

When designing a train connection overview, elements that are difficult to distinguish

from each other are used, and therefore, they are difficult to be perceived of visually

(low-contrast colours, small font size). Instead, the designer should have taken care

to use easily distinguishable elements (easily distinguishable colours, different font

sizes) when designing the train connection overview.

Figure 45 Elements that are difficult to distinguish

Another aspect that needs to be considered in sensory design, especially in visual perception

design, is the inclusion of white space.

White space

The free and undescribed areas on a display (for example, margins, gutters, and space be-

tween columns and graphics). Designers can use white space to separate unrelated user

interface elements and add aesthetic and effective value to the design.

The appropriate use of white space supports the recognition of the grouping and structure of

user interface elements and thus the faster comprehension and readability - the user needs

less concentration. The appropriate use of white space is also helpful from an aesthetic point

of view, especially in contrast to separator lines or borders.

Example:

The homepage of a well-known search engine is completely

white, with only the logo and the search bar in the middle.

The use of the large empty area allows the elements in the

middle to stand out. This clarifies the purpose of the page: to

search for something. Figure 46 Example of a search
engine site

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 95 of 132

5 Specific human needs

When designing the behaviour of an interactive system, accessibility and ethical aspects

must be considered, along with the fact that human needs vary depending on culture.

5.1 Accessibility

Interactive systems must be designed in terms of accessibility to support temporary impair-

ments or long-term disabilities and accommodate the effective application of assistive

technologies. Designers should know the importance of accessible design and relevant

laws, standards, and guidelines.

Learning Objectives

5.1.a
Know which human disabilities make accessible design necessary and how often

they occur.

5.1.b Know examples of assistive technologies and how they support users.

5.1.c
Know which important standards and guidelines for accessible design can be con-

sidered.

Accessibility is a component of human-centred quality that must be considered during design

to make user interfaces accessible to people with disabilities.

Accessibility

CPUX-F Definition

The extent to which an interactive system enables users to interact with it effectively, effi-

ciently, and with satisfaction, regardless of their level of vision, hearing, dexterity, cogni-

tion, physical mobility, etc.

About 15% of the world’s population have some form of disability, impacting their ability to

carry out normal day-to-day activities. Some people have significant, long-term disabilities,

whilst others are only temporarily impaired.

Disability

A physical or mental impairment which has a substantial and long-term adverse effect on

that person’s ability to carry out normal day-to-day activities.

Barriers in physical and digital environments can prevent people with disabilities from partici-

pating equally in society, for example, through a lack of access to digital services.

 The importance of accessible design

More than one billion people live with some form of disability. Many have more than one im-

pairment. About 20% of people with disabilities were born with their impairment, others have

had to adapt to their impairments later in life. “Disability” covers a wide range of impairments

– including motor, sight, hearing, and cognition – which manifest themselves in many ways.

For example, users might struggle to recognise icons, understand words or idioms, use a

keyboard or mouse, concentrate for long periods of time, differentiate between colours, or

hear, see, or move at all.

Impairments are not necessarily permanent. They can affect us temporarily.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 96 of 132

For example, breaking a bone, being deprived of sleep, suffering from a heavy cold – all

impair our ability to perform tasks effectively, efficiently, and with satisfaction.

Impairments are not static. Our physical, sensory, cognitive and emotional abilities change

based on our situation, and our environment can introduce or amplify existing impairments in

a way that makes it more difficult to perform tasks with an interactive system.

For example, having attention deficit disorder or just the use of one hand and travelling by

public transport, being in the cold when you have arthritis, or when at the beach on a

sunny day and having low vision.

Good accessibility can never be achieved by working in isolation from others in the project

team – design, content, and execution are equally important and depend on each other.

Three important rules to adopt for websites or apps are,

• make sure all elements can be accessed by keyboard alone, and that focus is clearly visi-

ble

• plan the page structure and its headings to facilitate comprehension

• provide appropriate, descriptive alt text for images and captions or transcripts for videos.

For further design recommendations for implementing accessibility, see below.

 Assistive technologies

Assistive technology

Software or hardware that can be added to an interactive system to support users with spe-

cific impairments in performing tasks.

Examples of assistive technologies: Screen reader, screen magnifier, speech input, cus-

tomised keyboards.

• A user with a visual impairment might use screen magnification software to zoom in to

specific areas on a page.

• A user with a motor impairment might use a switch to navigate and interact with a

webpage.

• A blind user may use screen reader software to understand, navigate, and interact

with an app.

• A user with a cognitive impairment who struggles with written text may use screen

reader software to read the page out to them.

Assistive technologies rely on the interactive system’s code to translate its nature to users.

For example,

• to tell users that there is a button or hyperlink that they can activate

• that there is a picture in the content, and to convey its description

• what a form field should contain, by referencing its label

• to convey the page structure and its headings.

 Laws, standards and guidelines for accessible design

Laws exist to protect the rights of people with disabilities and guarantee that they have the

same opportunities as people without disabilities:

• For the EU: European Accessibility Act

• For the UK: Equality Act 2010

• For the USA: Americans with Disability Act and, for government agencies, Section 508.

Rather than set their own guidelines and standards, many laws require products and ser-

vices within their territories to also adhere to international guidelines. These guidelines are

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 97 of 132

often referenced in courts of law to determine whether or not an organisation is making suffi-

cient adjustments to comply with accessibility law. Guidelines include:

• W3C’s “Web Content Accessibility Guidelines (WCAG) 2.1

• ISO 9241-171: guidance on software accessibility

The UK’s Government Digital Service team (GDS) has provided some very useful posters

with “Dos and don'ts on designing for accessibility”

https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-accessibility/.

Be aware that designing according to accessibility guidelines or standards does not guaran-

tee that you will produce an accessible interactive system. Always test with users who have

disabilities to evaluate usability.

https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-accessibility/
https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-accessibility/

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 98 of 132

5.2 Design ethics

In designing interactive systems designers influence the behaviour of users, therefore they

have an ethical responsibility regarding their design decisions. Intentional influence on users’

behaviour through persuasive design can be used to achieve behavioural adherence to so-

cially desirable outcomes or to trick users into harmful behaviours to achieve business goals.

Thus, user interfaces can be described in terms of the degree of honesty towards the user

(honest interface) and in terms of the intentional manipulation into actions that run counter

to the interests of users (dark pattern).

Designers influence users by activating behaviour patterns using different forms of nudges

such as interface metaphors or by considering the user’s domain knowledge. Further-

more, illusions of control or default settings are used to successfully persuade the user

through design. Responsible designers are aware of their influence on user behaviour and

therefore consider established ethical standards, rules, and guidelines when designing inter-

active systems.

Learning Objectives

5.2.a Understand that by designing an interactive system, designers influence human

behaviour and therefore have an ethical responsibility.

5.2.b Know the opportunities and risks of deliberately influencing human behaviour

through design.

5.2.c Understand the different forms of deliberate influence on user behaviour.

5.2.d Know generally accepted ethical standards of professional associations that must

be considered when designing an interactive system.

 Influence by design and ethical consequences

Designers influence human behaviour (consciously and unconsciously) by the design

choices they make when designing interactive systems and they must therefore act ethically

and responsibly. In particular, when employing persuasive design, designers need to be

aware of their ethical responsibility, as it can cause a change in users’ attitudes.

Persuasive design

A way of designing an interactive system based on psychological and sociological theories

about how to influence the user’s attitudes or behaviours.

For designers, it can be difficult to maintain ethical responsibility in the context of business

goals, but they must still be aware of this responsibility. Arguments concerning business

goals should be made transparent and visible against ethics.

While making design decisions for interactive systems, designers develop user interfaces by

moving back and forth on an ethical continuum from honest interface to dark pattern during a

design project [Brig2011]. Moving on the continuum means deciding the extent to which

there are opportunities and risks for the user when using the interactive system. Figure 47

shows this relation and Table 15 shows typical chances and risks.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 99 of 132

Honest interface

A user interface that considers the interests of users even over the (mostly economic) goals

of the provider.

Example: The default settings of an application are set to the option that’s safest for the

user (even if that contradicts business goals).

Dark pattern

A method of persuasive design to manipulate users into performing actions that run counter

to the interests of users and primarily serve the interests of system designers or providers.

The design of dark patterns often does not violate applicable laws. Dark patterns are ethically

questionable due to the deception of users and the resulting restrictions on the user’s deci-

sion making [Brig2013].

Example: Closing the window indicating the update of a new software version means

agreeing to perform the update.

Figure 47 Aspects of selective influence in the design of interactive systems

User interfaces that lie somewhere between honest interface and dark pattern are often a re-

sult of the decision to use manipulative techniques in design, to ensure the system primarily

supports the needs of the business.

Example: A streaming provider allows a one-month trial period, which is automatically

converted into a paid subscription at the end of the trial period. This fact is clearly and

comprehensibly pointed out on the website. Without employing this approach, the pro-

vider cannot afford to offer a trial period (which they hope will persuade the user to take

up a paid subscription when the trial ends).

(Dark Pattern)

Selective influencing by persuasive design

Use of behaviour patterns in design Elements for shaping

influence (nudges)

• Interface metaphors

• Illusion of control

• Targeted placement of

user interface elements

• Defaults

(Honest Interface)

Standards for the consideration

of ethical aspects

opportunity risk

Ethical standards Guidelines & laws

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 100 of 132

User interfaces must be checked for unintentional influence and be designed with regard to

intentional influence.

Table 15 Opportunities and risks of influencing human behaviour by design

Opportunities of influencing human behav-

iour by design

Risks of influencing human behaviour by de-

sign

• Encourage users to achieve their goals

more efficiently with the interactive sys-

tem

• Users achieve goals they didn't know

they could achieve

• Trigger positive behavioural changes

such as “Eco Design” (ecological design /

sustainable design)

• Forcing goals on users that are not im-

portant to them

• Conflict with ethical standards, guidelines,

and laws

• Hinder or completely suppress independ-

ent decision making

• Deceiving users

Example: Eco Design promotes sustainable behaviour through persuasive design, for ex-

ample, an email service provider providing a link to an “energy-saving login” that leads to

a page that doesn't contain any items other than the login fields [JoMa2017].

 Use of nudges as design elements of influence

Designers can influence the user’s behaviour by purposefully activating behaviour patterns

using design elements of influence [Spre2018].

Behaviour pattern

A standardised recurring approach to completing tasks which guides a multitude of human

decisions and stands in contrast to the concepts of rational decisions.

Example: A mobile payment app sets the option “tip” as default. Therefore, more users

are tipping as they are always asked to tip when paying a bill and explicitly must set “no

tip” if they do not want to tip.

The way in which the behaviour pattern is used in the example is also called a nudge

[ThSu2008].

Nudge

Designing the user interface for a situation in which decisions have to be made with the aim

of changing human behaviour in a predictable way, without prohibiting decision options or

seriously changing their economic benefit.

 Typical forms of nudges

Interface metaphors illustrate interaction by referencing everyday experiences which improve

the user’s interaction with a technical system in terms of effectiveness and efficiency.

Interface metaphor

The attempt to match the user's prior knowledge with the functionality of the interactive sys-

tem by activating specific domain knowledge directly through the user interface elements

used and the type of interaction.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 101 of 132

Example:

The idea of the computer default screen being like a desktop and placing and arranging

things (icons) on this desktop space is an interface metaphor.

Many desktop operating systems illustrate deleting a file by moving it to a recycle bin (re-

cycle bin metaphor). This recycle bin in the interactive system must be emptied at regular

intervals, as must the contents of a recycling bin in the real world. The recycle bin meta-

phor is an abstraction of the function “delete file”. There is a divergence between the in-

tended function “temporarily remove a file by moving” and the meaning of the symbol “de-

stroy”.

Existing domain knowledge can be used in the interaction with the system. Interface meta-

phors only work if they are understood and perceived by the user. Divergences lead to users

being restricted in their use of the interactive system.

Domain knowledge

System independent knowledge about tasks, processes, and people involved within a cer-

tain application field.

The illusion of control over the interactive system results in users taking greater risks; for ex-

ample, in relation to the processing of their personal data [BrAA2013].

Illusion of control

A feeling of control among users, even though they have little or no objective influence on

the behaviour of the interactive system.

Example: In individual social networks, specific wording is used to lead users to believe

they have a disproportionate sense of control over the data processed by the company.

The request to subscribe to a supposedly free newsletter is: “Subscribe to our free news-

letter”. The fact that the user exchanges personal data for this purpose is deliberately

concealed.

The user must be informed about the consequences of their actions. The options offered on

the user interface must have a technical implementation. If this is not the case, the illusion of

control is used against the interest of the user and represents a dark pattern.

The targeted placement of user interface elements influences the perception of information.

The examination of eye movements in the perception of advertisements allows conclusions

to be drawn about the orientation of human attention.

The “hiding” of certain information and options is used to give less attention to information

(dark pattern). In an honest interface, important information is presented in user interfaces in

places that are more noticeable to the user.

Example: Recent news or other important notifications are placed in the top left corner of

a page to get immediate attention from a user usually scanning the website in the “F”

reading scheme.

Defaults go hand-in-hand with a great deal of responsibility. Defaults are rarely considered

by the user and hence are not often changed.

Default

A setting pre-selected by the system unless the user explicitly changes it.

Defaults are defined by rules and laws in certain areas.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 102 of 132

Examples:

When installing a computer programme, the additional installation of a browser extension

is pre-selected.

The agreement to using data for promotional activities is not pre-selected and requires

the explicit agreement of the user.

 Responsible design by applying common ethical standards

When designing user interfaces, designers consider different interests and ethical aspects of

design decisions. Responsible action, ethical standards, guidelines, and laws must be ob-

served:

1. The General Data Protection Regulation (GDPR) is a legal regulation in the EU that (di-

rectly) determines the use of techniques for intentional influencing. It requires the devel-

opment of systems according to the principles “Data Protection by Design” and “Data

Protection by Default”. Data Protection by Default requires a high level of data protection

for users, even if they do not explicitly object to the collection and use of personal data.

Example: This requirement implies that the default settings of checkboxes by the de-

signer must represent the options that offer the strongest data protection.

2. The Meta-Code of Ethics lays down transnational ethical principles which are specified

by the ethics guidelines of the associations of the member countries, for example, the

American Psychological Association and the Association for Computing Machinery.

Example: The European Psychology Association [EFPA2005] provides professional

ethical guidelines for psychological activities, which are also used for design solutions.

• We need to be vigilant against personal, social, institutional, financial, and political

influences which could lead to misuse or incorrect application of psychological in-

sights.

• The quality and results of services also depend on the extent to which people can

use these services self-sufficiently and autonomously.

• The impacts of our actions on third parties must be taken into account.

Usability tests help to verify and comply with ethical guidelines by providing evidence of ethi-

cally problematic design decisions and reducing their unintended use.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 103 of 132

5.3 Cultural diversity

Intercultural user interface design takes intercultural contexts of use into account through

specific methods and concepts. For example, the strategies of internationalisation and lo-

calisation are applied. Intercultural usability testing helps to evaluate design decisions

from an intercultural context of use.

Learning Objectives

5.3.a Understand methods for interculturalisation.

5.3.b Know the concepts of internationalisation and localisation.

 Intercultural user interface design (IUID)

Designing intercultural user interfaces for an interactive system considers all design deci-

sions which are under cultural influences.

Intercultural user interface design

A process of adequately designing an interactive system considering the cultural aspects of

the context of use.

The precondition for intercultural user interface design is knowledge about the cultural differ-

ences in human interaction with interactive systems and its considerations in designing solu-

tions throughout the whole design process.

Interculturalising extends the adaption of the user interface beyond the translation into an-

other language by considering all other user interface characteristics in the cultural context,

such as adapting navigation structure, interaction frequency, or information density. Further-

more, it is fundamentally important to start with the intercultural design of user interfaces.

Therefore, it is necessary to create awareness for this topic at the beginning of the design

activities. At the start of a project, the designer must establish if there is an intercultural con-

text of use. If so, they must ensure that those with appropriate expertise in intercultural user

interface design are involved in the project.

 Methods for interculturalisation (IUID process)

The process of intercultural user interface design is based on human centred design, but

considers specific aspects of intercultural communication, competence, and management, as

well as intercultural software engineering, including internationalisation and localisation, and

intercultural usability engineering [Heim2019].

Figure 48 Principle procedure for the design of intercultural user interfaces

Internationalisation Localisation

Adaptation of technologies

for culture-oriented design

Adaptation of content to

geographies and cultures

Intercultural

UI concept

Cross-cultural

usability-testing

Adaptation to intercultural

contexts of use

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 104 of 132

 Intercultural user interface design according to cultural contexts of use

The following concepts are considered in intercultural user interface design:

• Cultural differences expressed by cultural dimensions (such as individualism vs. collectiv-

ism)

• Intercultural variables that represent different preferences of users from different cultures.

These can be invisible (for example, way of thinking, decision premises, ideology, etc.) or

visible (for example, layout, colours, font).

• User interface characteristics (for example, reading direction, symbols, layout, navigation

structure, information density).

The procedure to adapt the user interface to cultural contexts of use involves,

1. selecting the subject of the design, the most important applications (for example, intercul-

turally relevant usage situations), and the desired target cultures (for example, China,

Western Europe, the Arab world, etc.)

2. determining the respective user interface elements (such as layout, buttons, text fields)

and assigning them to the characteristics of the intercultural variables (for example, invis-

ible, visible) as well as to the main property categories of user interfaces, such as

presentation level, interaction level, navigation level, symbol level (for example, meta-

phors, icons), and thinking level (such as mental model)

3. determining the characteristics of space- and time-related variables, such as information

density or interaction frequency

4. relating the intercultural variables to the properties of the user interfaces in order to de-

rive cultural interaction indicators and design recommendations for the design of intercul-

tural user interfaces.

 Concept of internationalisation (I18N)

Internationalisation

The process of building up a platform for software application so that an interactive system

can be adapted to various languages and regions without any change in the technical plat-

form. Internationalisation is often abbreviated as I18N (18 letters between I and N).

The interactive system is designed and developed to ensure problem-free localisation; for ex-

ample, by automatic adaptation or easy parameterisation of culturally dependent variables.

Localisation at a later date is possible without further alterations to the system architecture or

other aspects of the technical platform – no further changes to the platform or source code

are required during localisation.

An example of the internationalisation of an interactive system: A German company de-

signs the entry fields of a website so that French words with longer word length can also

be entered.

 Concept of localisation (L10N)

Localisation

The process of adapting the internationalised interactive system for a specific region or lan-

guage by translating text and adding or replacing locale-specific components by parameteri-

sation. Localisation is often abbreviated as L10N (10 letters between L and N).

Adaptation is made with regards to geographical (local, regional, country-specific) and cul-

tural (ethnic, linguistic, legal) requirements in such a way that the system is accepted by the

user of the target market and can be used.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 105 of 132

Examples of the localisation of an interactive system:

• Reading direction can differ in different cultures, for example, the reading scheme “F”

must be reversed (right to left) for the Arabic culture.

• Colours have different meanings in different cultures; for example, the meaning of

“death” is associated with the colour “black” in Germany and with the colour “white” in

China. Therefore, in the configuration of the interactive system, the colour is pre-set

according to the target culture.

 Intercultural evaluation and agreement

The agreement with stakeholders on intercultural user interface design projects and the eval-

uation with users and other stakeholders must take intercultural aspects into account.

Intercultural usability testing

A form of usability testing in which a product is tested in different cultures. Various teams

with representatives from relevant user groups are involved.

Intercultural, therefore, refers to the inclusion of users from all relevant cultures during user

participation (for example, in contextual interviews, usability tests). Usability tests should be

performed in respective cultures or with different representatives from the user population in

each culture (for example, from Japan, India, Europe). Evaluation can take place with users

brought together in one place; it can take place in respective cultures or can be performed

remotely.

Organising the required resources is complex business; therefore, planning must be carried

out at an early stage. A shared commitment to an intercultural approach in the project team

must be made against the background of these resources.

An example of intercultural usability testing: For the evaluation of an interculturally de-

signed website, Chinese, Western European, and sub-Saharan African participants will

be invited. The increased planning effort for the recruitment of participants from different

countries was considered at the beginning of the project and the necessary resources

have been provided. Without these resources, the tests could only have been carried out

remotely.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 106 of 132

6 Aspects beyond the design activities

All participants in design projects have an idea of what a good solution should look like. They

must be heard and respected. It is crucial for the designer to communicate with users and

stakeholders as early as possible, involve them, and bring forward joint decisions as an

agent for the users' perspective. Furthermore, the designer must skilfully employ design rec-

ommendations and understand the significance of documenting design decisions.

6.1 Managing stakeholders

A designer needs to manage stakeholders in the discussion of work products, to reach ac-

ceptance for the designed solution. They need to work towards consensual agreement

about the quality criteria, as an agent for the user’s perspective, and thereby emphasise hu-

man-centred quality objectives.

Designers need to adopt a mindset of continuous improvement of human-centred quality,

which has several quality dimensions including usability, user experience, avoidance of

harm from use, and accessibility.

Designers continuously improve human-centred quality through regular formative evaluation,

by including user feedback into discussions with stakeholders, and by employing participa-

tory design. Tools such as customer journey maps help visualise the work for others in-

volved in the project.

Learning Objectives

6.1.a
Understand how to achieve consensual agreement to balance the human-centred

quality and the quality objectives of other stakeholders.

6.1.b
Know the relevance of human-centred quality objectives in achieving human-cen-

tred quality in the design process.

6.1.c Know that stakeholders should be involved in a UX design project and that interdis-

ciplinary work with stakeholders and team members contributes to a successful de-

sign solution.

6.1.d Know user journey map as a method to visualise the intended interaction with the

system.

6.1.e Know how to distinguish between a customer journey map and a user journey

map.

 Setting quality objectives for the project

The main goals of a design project are the successful support of user goals and the satisfac-

tion of additional stakeholders. Stakeholders in design projects may have different expecta-

tions about the solution and also different quality objectives. Their expectations should be

collected and visibly documented in a kick-off workshop.

The possible quality objectives of stakeholder groups in a design project are as follows:

• Business: “In the context of a specific customer, the interactive system can be ready to

be used within 5 workdays.”

• Users: “The PC operating system, installed in a standard configuration, needs at maxi-

mum 90 seconds from pressing the power button until the user interface provides the op-

tion to start an application.”

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 107 of 132

• Technology: “It must be possible to maintain the interactive system remotely, for exam-

ple, via a data connection over the internet.”

It is easy to mistake the project briefing for “all there is to know” about the design work at

hand. Often important information is missing and needs to be worked out in consensual

agreement with stakeholders.

Consensual agreement

A process for reaching a consensus decision with a party; for example, the stakeholders.

Making a decision does not require the explicit approval of each individual, but it does de-

pend on the there being no strong disapproval. It does not need any formal or symbolic acts

to cement the obligation.

All the involved parties must agree, or be prepared, to give up or at least postpone any dis-

senting opinion or objections to the decision taken. All participants then support the decision

regardless of any reservations they may have.

This can include any element of a design project. It is especially important for the designer to

set up and lead discussions with stakeholders about quality criteria for the project and the

relevance of user feedback.

It is the responsibility of the designer in the course of the project to negotiate a fair and con-

sensual agreement about the quality objectives for the project with stakeholders, and for eve-

ryone to aim for these objectives in unison. When agreeing technical and business objectives

for a successful design project, the designer, as the agent for the user, has to emphasise hu-

man-centred quality.

 Human-centred quality objectives

From the point of view of a UX designer, as the agent for the user, the main goal of a design

project is the successful support of user goals. The designer needs to adopt the mindset of

continuous concept evaluation with users throughout the design process in order to learn

from feedback and iteratively improve the human-centred quality of the designed solution.

Human-centred quality

The degree to which stakeholder requirements are met in an interactive system. They refer

to the quality dimensions usability, accessibility, user experience, and avoidance of harm

from use.

Human-centred quality is, in addition to technical quality, an important aspect of quality. It de-

scribes those dimensions of quality that users and other stakeholders actively perceive

through interaction with the interactive system, while technology-centred quality provides the

prerequisites for it. While human-centred quality is the result of implementing stakeholder re-

quirements, technology-centred quality is the result of implementing system requirements.

Whether human-centred quality can be met in a design project, depends on the readiness for

consensual agreement among the stakeholders and the usability maturity of the organisation.

The more mature an organisation is and the better stakeholders work towards an agreement,

the more likely it is that through iterative improvement the project will achieve the quality ob-

jectives that have been set.

A high usability maturity level refers to

• the open-mindedness of the management and stakeholders towards human-centred de-

sign

• a genuine wish to develop human-centred quality

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 108 of 132

• a commitment to actively participate in and support human-centred design activities

• the development of human-centred quality standards for projects

• ensuring the availability of necessary competencies and resources for integrating human-

centred design into development activities.

To be an effective agent for users, the designer must know the quality objectives of all stake-

holders and be present when work products are discussed. They are the stakeholder for the

human-centred quality objectives.

Human-centred quality objectives

CPUX-F Definition

The goals that are to be achieved for the user of an interactive system when developing

the interactive system. Human-centred quality objectives relate to one or more of the fol-

lowing components of human-centred quality: usability, accessibility, user experience,

and avoidance of harm from use.

They are objectives of the stakeholders regarding the human-centred quality of the interac-

tive system to be developed or improved. They are specified in the planning of human-cen-

tred design. They are not yet user requirements. Solutions are designed to fulfil them.

An example of a human-centred quality objective: The efficient operation of an applica-

tion. The designer shouldn’t integrate complex animations, which waste users’ time.

They can be formulated as verifiable quantitative user requirements if they are to serve as

acceptance criteria in the project.

An example of a quantitative user requirement: The user must be able to complete the

task within 30 seconds.

A human-centred quality objective can also be formulated by any stakeholder.

An example: A management objective could be that users must be able to operate the in-

tended system without explicit training.

Besides usability and user experience, avoidance of harm from use and accessibility are two

further important dimensions of human-centred quality for which human-centred quality ob-

jectives might be relevant for a design project.

Demands related to safety or data privacy rules indicate the relevance of avoidance of harm

from use.

Avoidance of harm from use

The extent to which the design of the interactive system minimises potential risks to ac-

ceptable levels in terms of stakeholder safety and health, economic considerations, or the

environment.

An example: During use of an interactive system,

• avoid loss of unrecoverable data

• avoid unwanted access to personal data

• avoid financial risks

• avoid serious injuries.

 Agreement on user feedback

For a designer in a design project, user feedback might be sufficient to question and iterate

the solution. Stakeholders may have their own goals for the solution to be developed and

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 109 of 132

might object to changes based on user feedback. As an agent for the user, the designer

needs to

• wholly understand the user perspective, as users are generally not involved in the discus-

sion

• have strong arguments about how design decisions may affect users and their experi-

ence

• be able to explain the effects of evaluation results

• accept that a good compromise often is the best that can be done.

 Involve stakeholders

The designer needs to iterate concepts with stakeholders and with the interdisciplinary team

members, to include their feedback in order to meet their expectations. Participatory design

has positive effects on the acceptance of the final product.

Participatory design

The engagement of users, members of the interdisciplinary team, and stakeholders in the

conception and evaluation of the system to be designed.

Participation should start in the early phases of the design process, for example, through

joint work on the design of solutions, informative evaluation, or continuous collection of user

feedback.

Iteration should start with the presentation of use scenarios which can be complemented by

the presentation of journey maps. Furthermore, any tangible version of the solution under de-

velopment can be evaluated with stakeholders, just as it is done with users.

Iterating tangible work products with stakeholders:

• Make sure that during discussions with stakeholders, you relay the story behind your

work product, for example, talk about a specific task or question the user has.

• Use scenarios, for example, in the form of a storyboard, can help stakeholders to put

themselves in the situation of the user.

• The information architecture can be evaluated by visualisation, for example, with the

cores and paths method.

• Design decisions can be experienced in initial prototypes.

Like use scenarios, user journey maps are another method to visualise the current comple-

tion of users’ core tasks as well as the designer’s optimised, intended vision of how core

tasks will be completed, in a compact, clear, and structured way. User journey maps are

used to communicate the current or intended interaction of a user persona with the interac-

tive system [GePo2018].

Typical characteristics of user journey maps are that

• they focus on the core tasks of the user.

• they visualise the journey of a single user (persona) solving a task.

• they put phases, individual steps, and sequences in a chronological structure.

• they provide insight into the user’s motivations and attitudes, for example, by mapping the

detailed goals, thoughts, feelings, and pain points of a persona as well as opportunities

for improvement.

• they leave out “internal” processes and actors that users don’t interact with.

Maps must point out whether they show the as-is state or the intended state. The descrip-

tions of the intended state make the vision of the future tangible for all stakeholders.

An example: User journey map (intended)

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 110 of 132

Figure 49 Example of a user journey map (intended use)

In contrast to user journey maps, customer journey maps are used to communicate the cur-

rent or intended interaction of a person in the role of a customer rather than a user with the

interactive system [GEPO2016].

Customer journey map

A graphical or tabular description of all encounters customers have with a product, service

brand, or company, covering all touchpoints that influence the customer experience, making

the over-all customer experience tangible for others.

Customer journey maps graphically or tabularly display all touchpoints on the “path” of a spe-

cific customer. They include all phases of the experience of discovering, considering, pur-

chasing, and using an interactive system so that the entire customer experience can be un-

derstood by others. In contrast to user journey maps, they are based on the complete experi-

ence cycle of a customer instead of focusing on the “use phase” where the user’s core tasks

are in focus.

Typical characteristics of customer journey maps are that

• they focus on all the touchpoints of a customer with the interactive system and its supplier

• going beyond the actual task completion, they visualise the journey of a single customer

(persona) throughout the whole experience cycle of the customer relationship, from the

purchase and procurement to the decommissioning and disposal.

• in addition to task-related goals, they focus on customer goals, like an appropriate

price/performance ratio.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 111 of 132

6.2 Setting the frame for design work

The designer has to set the boundaries for the design work by deciding on one or more sys-

tems of design recommendations to be applied, for example, deciding for interaction

principles, heuristics, design patterns, or user interface guidelines in style guides to

ensure a good human-centred quality.

Learning Objectives

6.2.a Be able to apply common systems of design recommendations.

6.2.b Understand what design patterns are and where to get information about them.

6.2.c Understand the meaning of a style guide for designing solutions and quality criteria

for style guides.

 Deciding on the design process and methods

Today a variety of design processes and design methods are in use. Each of these aims at

different aspects of the development of a solution and may have an impact on the results. In

the beginning of a project, the designer needs to clarify the process and methods to be used

with stakeholders, in order to avoid misunderstandings and avoid risking the success of the

design project.

Some popular design approaches and methods include

• Human-centred design: focuses on five activities to ensure human-centred products

• Lean UX: focuses on fast learning in agile teams by continuous UX validation of design

decisions with users

• Design thinking: focuses on the creation of innovative and convincing ideas for known

problems, which are not necessarily digital

• Ideation: focuses on the creation of a huge number of variants of a possible solution, in-

volving users and stakeholders

• Design sprint: focuses on detailing a business model for a new digital product, which

sometimes gets prototyped in the process.

It is important to pick an approach and method that are tailored to the goals of the design

project while emphasising the user requirements and user involvement at the same time. The

HCD approach comprises classical methods and is open to the introduction of other creative

methods where needed.

 Deciding on appropriate systems of design recommendations to be used

A design project might require the application of general or specialised systems of design

recommendations.

System of design recommendations

A selection of principles, heuristics, rules, design patterns, and/or guidelines (often compiled

in style guides) that serve as guidance and as a basis for designing the solution for an inter-

active system.

It is the responsibility of the designer to decide which recommendations are to be used and

to apply them in a meaningful and methodically correct manner.

Systems of design recommendations range from rather general to very specific recommen-

dations: interaction principles, heuristics, design patterns, and style guides.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 112 of 132

When deciding on systems of design recommenda-

tions,

• clarify whether mandatory standards exist (such as

the Web Content Accessibility Guidelines).

• choose systems that suit the given design project

(i.e. that provide a strong argumentative basis for

or against design decisions).

• ensure the applicability, validity, and topicality of

the chosen systems.

• study the chosen systems in detail.

When applying systems of design recommendations,

• use the chosen recommendations for design, for

example, a requirements list can be hung up in the

workspace in a visible position.

• use the chosen recommendations for evaluating

design decisions: Document the results of the eval-

uation as a collection of findings from which pro-

posals for changes can be derived.

• communicate with team members and stakehold-

ers during design and evaluation so that individual

recommendations and their implementation can be discussed.

Avoid these common mistakes:

• Applying unverified recommendations

• Working superficially with recommendations (based only on the “heading levels”)

• Skipping discussions within the team and with stakeholders

• Forgetting to document design decisions or suggested changes, adequately and visibly.

 General design recommendations

There is a variety of general design recommendations, of which two are introduced here: The

interaction principles of ISO 9241 [ISO9241-110] and Nielsen’s heuristics [Niel1993].

Standards of the ISO 9241 series

 “Ergonomics of human-system interaction” is part of ISO 9241 and includes design recom-

mendations for all types of interactive systems that must be met in human-centred design.

ISO9241-110 names and describes seven interaction principles as technology-independent

objectives for the design of interactions with interactive systems. They articulate goals with

associated suggestions as to how these goals can be achieved.

Interaction principle (formerly dialogue principle)

CPUX-F Definition

A general goal for the design of useful and usable dialogues.

The designer can use these principles from ISO 9241-110 and the recommendations con-

tained to make appropriate design decisions from the viewpoint of appropriate interaction

design.

The seven interaction principles are suitability for the user’s task, self-descriptiveness, con-

formity with user expectations, learnability, controllability, use error robustness, as well as

user engagement.

Figure 50 System of design
recommendations from general to specific

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 113 of 132

As of 2020, important changes regarding the interaction principles have been made which

are of relevance to designers. The former principle of suitability for individualisation is now

included as an aspect of controllability. Furthermore, error tolerance has been revised and

renamed as use error robustness. Finally, the principle of user engagement has been added.

Descriptions of the updated principles follow below.

Use error robustness: The interactive system assists the user in avoiding errors and in the

case of identifiable errors, treats them tolerably and assists the user when recovering from

errors.

“Use error robustness” involves guidance related to use-error avoidance, use-error tolerance,

and use-error recovery, listing 12 recommendations in total. For example, it is recommended

that you provide error messages that are precise, comprehensible, and polite.

An example: Instead of saying, “An error occurred”, say “Passwords must consist of at

least 10 characters. The password you entered contains 8 characters but is otherwise ac-

ceptable”.

User engagement: The interactive system presents functions and information in an inviting

and motivating manner supporting continued interaction with the system.

“User engagement” includes 12 guiding recommendations related to motivating the user,

trustworthiness of the system, and increasing user involvement with the system. For exam-

ple, it is recommended that an interactive system should build trust in its use.

An example: In addition to giving the user access to product ratings, an online shop dis-

plays a logo that each purchase has genuinely been made by the customer providing the

feedback.

In total, 64 general recommendations accompany the interaction principles. While the inter-

action principles are relevant for every system, the approaches to their implementation may

vary – the designer must decide which recommendation to follow depending on the context

of use.

An example: An online reservation system for restaurants does not inform the user that

their reservation request was not processed due to incomplete input. The user expects to

find a reserved table at the respective date but then learns that their hopes were in vain.

If the designer of the restaurant’s website had followed the recommendation “The interac-

tive system should assist the user in detecting, understanding, and correcting errors in in-

put” of the interaction principle use error robustness, the visitor would have known how a

valid reservation is made.

The other parts of ISO 9241 “Ergonomics of human-system interaction” focus on design rec-

ommendations for specific issues or domains, like the presentation of information (Part 112),

design of forms (Part 143), user interface elements (Part 161), and software accessibility

(Part 171).

Usability heuristics according to Nielsen

Heuristics (“rules of thumb”) describe the general guidelines for the design of usable systems

with a focus on the user interface.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 114 of 132

Heuristic

CPUX-F Definition

A generally recognised rule of thumb that helps to achieve usability.

Heuristics help in designing usable solutions and in usability evaluation.

Nielsen has formulated a widely accepted collection of ten usability heuristics with contents

that represent essential success factors.

Table 16 Jakob Nielsen's 10 heuristics

Heuristic Description

Visibility of system sta-

tus

The system should always keep users informed about what is go-

ing on, through appropriate feedback within reasonable time.

Match between system

and the real world

The system should speak the users’ language, with words,

phrases, and concepts familiar to the user, rather than system-ori-

ented terms.

User control and free-

dom

Users often choose system functions by mistake and will need a

clearly marked “emergency exit” to leave the unwanted state with-

out having to go through an extended dialogue. Support undo and

redo.

Consistency and stand-

ards

Users should not have to wonder whether different words, situa-

tions, or actions mean the same thing. Follow platform conventions.

Error prevention Even better than good error messages is a careful design which

prevents a problem from occurring in the first place. Either elimi-

nate error-prone conditions or check for them and present users

with a confirmation option before they commit to the action.

Recognition rather than

recall

Adjust the user’s memory load by making objects, actions, and op-

tions visible. The user should not have to remember information

from one part of the dialogue to another. Instructions for use of the

system should be visible or easily retrievable whenever appropri-

ate.

Flexibility and effi-

ciency of use

Accelerators – unseen by the novice user – may often speed up

the interaction for the expert user such that the system can cater to

both inexperienced and experienced users. Allow users to tailor fre-

quent actions.

Aesthetic and minimal-

ist design

Dialogues should not contain information which is irrelevant or

rarely needed. Every extra unit of information in a dialogue com-

petes with the relevant units of information and diminishes their rel-

ative visibility.

Help user recognise,

diagnose, and recover

from errors

Error messages should be expressed in plain language (no codes),

precisely indicate the problem, and constructively suggest a solu-

tion.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 115 of 132

Heuristic Description

Help and documenta-

tion

Even though it is better if the system can be used without docu-

mentation, it may be necessary to provide help and documentation.

Any such information should be easy to search, focused on the us-

er's task, list specific steps to be carried out, and not be too large.

Example: While using a website, the user suddenly receives a status code “502 Bad

Gateway error” without any further description. The user is confused and closes the site.

If the user does not understand the error message, then the information about the error is

pointless. If the designer had followed the usability heuristic “Help user recognise, diag-

nose, and recover from errors”, the user would have known how to handle the error mes-

sage.

Example: In order to better follow the heuristic from the last example, the designer re-

vises the error message as follows: There is a problem with the connection to your

server. Please check out these common causes and ways to fix the problem: 1. Try to re-

load the page by pressing F5 or use the reload-function in your browser, 2. Clear your

browser’s cache (link to instruction: how to clear the cache), 3. Check the problem with

your provider: Please give them the following information: “502 bad gateway error”.

Examples for all heuristics can be found in the CPUX-UT curriculum [UXQB2020].

 Sample solutions for typical design problems

During the design of user interfaces, some design questions will always reoccur. At this more

specific level of design recommendation, design patterns provide “sample solutions” for the

designer to reuse as design decisions and ensure consistent design.

Design pattern

CPUX-F Definition

A solution to a commonly occurring design problem within a given context of use. The de-

sign pattern describes the design problem, a general solution, and examples of how to

apply the solution.

Design patterns are described by a uniform schema and usually contain

• a description of the problem the user has

• the context of use for which the pattern is made

• related recommendations for design

• an explanation of how the solution works

• an example of an implementation of this design pattern in a real problem context.

This schema can also be used to define your own patterns [Tidw2011]

As a general rule, design patterns describe problems as well as their causes and represent a

reusable solution approach as well as specific solution options.

Example of a design pattern for error messages:

• Problem description and context of use: For the design of an application form for an

online store, it is known that users often enter invalid information or make typing er-

rors. Therefore, in case of invalid entries, appropriate error messages should be dis-

played. For this, a known design solution will be implemented, so that users recognise

the type of message and are supported in finding solutions for the problem.

• Recommendations for design and an explanation of the solution approach: Design in-

put fields in a way that prevents erroneous input (for example, by format restrictions).

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 116 of 132

For errors that still occur, show a general error message stating that one or more en-

tries are wrong. Additionally, mark the fields which caused the error and provide a de-

tailed message for each field. In order to highlight this message, use colour, an alter-

native font style, or a graphic.

• Examples for the solution: Screenshots of this design pattern in other online shops.

The designer can use design patterns from design libraries or document them individually for

re-use.

 User interface guidelines

User interface guideline

CPUX-F Definition

A low-level specific rule or recommendation for user interface design that leaves little

room for interpretation, allowing designers to implement it consistently.

This most specific level of design recommendations comprises manufacturer-specific user

interface guidelines that are based on the extensive experience of practitioners or even em-

pirical studies about the effect of certain design decisions. User interface guidelines are used

to ensure the consistent design of products and product families, and ease design decisions.

Style guide

A style guide might contain user interface guidelines for

• user interface elements

• view/page/screen layouts

• the behaviour of the user interface (not specific to single user interface elements)

• colours (the colour palette) to be used throughout the user interface

• typography

• the use of images, graphics, sound, and video

Style guides are more and more located in design systems.

CPUX-F Definition

A collection of user interface guidelines used to ensure consistency in the appearance

and behaviour of user interfaces across interactive systems produced by the same organ-

isation.

An example of a user interface guideline from the iOS style guide:

“On devices running iOS 13 and later, people can use the touch and hold gesture to open

a context menu, regardless of whether the device supports 3D Touch.”

A collection of user interface guidelines is a style guide, a document that provides the rules

for the presentation of a specific interactive system according to a company’s brand and cor-

porate design.

Style guides mainly refer to a class of interactive systems or to the interactive systems of a

certain manufacturer. As such, they may be understood as local de facto standards with the

goal of standardisation. A good style guide creates consistency in appearance and the be-

haviour of interactive systems while at the same time helping to communicate and document

changes and new features [JaMe2017].

An example: A smartphone manufacturer has specific style guides for each of its

smartphone models. These style guides are used for promoting the new developments of

respective models. At the same time, there are overarching style guides for all

smartphone models as well as a style guide that relates to all of the company’s products.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 117 of 132

Style guides may contribute to the development of design systems (see 6.4.3) for the imple-

mentation of interactive systems.

Typical components of a style guide are

• formulation of the corporate identity and corporate design

• concept and intentions of the product

• view/page/screen layout grid with exact details of proportions

• description and placement of essential functional components (for example, user inter-

face elements with an explanation of their behaviour)

• description and placement of all essential content components (use of logo, headings,

text, images, graphics, tables, sounds, videos, etc.)

• the colour palette with appropriate details and instructions for their use

• typography with specifications for fonts and font sizes, distances, types of use (heading,

continuous text, captions, etc.).

Recommendations for good style guides:

• Make guidelines easy to apply and adopt (for example, indicate the colour code instead

of just representing the colour)

• Make sure that the guidelines given in the style guide conform with general systems of

design recommendations

• Include and explain examples for applying each guideline

• Include the references to appropriate design patterns with code snippets

• Follow the criteria for help and documentation (FLUID model) to ensure the usability of

the style guide

• State the validity and the version of the style guide

• Include descriptions of the required behaviour of user interface elements since this is not

directly visible in the style guide

• Decide on how compliance with the style guide will be checked

• Follow up on deviations from the style guide in a friendly manner

• Update the style guide regularly.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 118 of 132

6.3 Attending to implicit design tasks

If the scope of a design project covers a bigger part of a product or even the whole product,

there are often implicit design tasks to be considered that are usually neglected by the initi-

ator and do not show up in a project briefing. It is very important to attend to those implicit

design tasks which often require their own context of use analysis.

Learning Objectives

6.3.a Understand what implicit design tasks are and know an example.

6.3.b Know which basic guidelines must be followed for a well-designed search.

6.3.c Understand the FLUID model for help and documentation.

Among the designer’s responsibilities, include addressing implicit design tasks.

Implicit design task

A design task that often is not mentioned in a project briefing, and goes beyond the immedi-

ate task-related design. Coherent implementation of implicit design tasks is essential for us-

ers to be able to achieve their goals, and therefore, it is the responsibility of the designer to

address them.

Among those implicit design tasks are the design of

• feedback, notifications, information, warnings, error messages (Your battery is running

low. You might want to plug in your PC.)

• status information (“You have 7 new messages.”)

• instructions (Separate email addresses using a space, comma, semicolon, or line break.)

• help: Support provided in the interactive system, which may deal with certain topics or

procedures or may refer the user elsewhere

• user documentation: Information available to users in writing or otherwise about how the

interactive system works, and how it is to be used

• search

• filtering and sorting lists.

Addressing implicit design tasks will improve the usability of and user experience with the

user interface. As examples for the work on implicit design tasks, the curriculum will provide

the subjects of search, help, and documentation.

 Search

The option to search for content must be supported by almost every interactive system. To

design a usable search, the designer must consider the common steps users take when the

need for a search arises:

• Identify access to search

• Understand how to use the search function

• Identify the information to be searched for

• If necessary, decide on suggested search terms

• Get an overview of search results

• Reduce the set of search results, if necessary

• Process relevant search results for the intended purpose.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 119 of 132

Basic recommendations on how to design a search [Trav2009]:

• Provide a simple search as a default search (one input text field)

• Offer a default of search terms and criteria

• Provide a meaningful response to the search query, even when no results are returned.

• Do not mix the search result list with other tasks (for example, the editing of data within

the search result list)

• Make the search error-tolerant, provide automatic spell checking, and allow the use of

plurals and thematically similar search terms

• Use the most common searches, which often provide useful results for the user

• Define the scope of the search from the user's point of view

• Show matching search results in a results overview

• Explicitly specify the scope of the search results together with the search results

• Let users restrict the scope of search results (if relevant for the task)

• Provide useful meta information in the results overview, such as the document size, the

creation date, or the file type

• Enable the search results to be compared using information that is relevant from the us-

er's point of view

• Do not duplicate results

• Enable the further use of single results or result sets

• Finish the search so that all contents are accessible for further work.

 Help and documentation

As with the design of a search, the designer needs to follow the steps users take when look-

ing for help, to provide appropriate help and documentation. The FLUID model [Wrig1983]

describes five steps that a user completes to solve a problem. Tips are given for each step:

• Formulate: users formulate their problems in the form of search terms

• Provide an overview of the tasks, for example, in tabular form, which supports the for-

mulation of the problems

• Provide an easily accessible list of typical errors.

• Locate: users try to find the appropriate content

• Provide an overview of step-by-step instructions for solving tasks or problems

• Adapt the overview to the user's problems to be solved and clarify which problems

cannot be solved this way

• Integrate an easy-to-find index with relevant terms

• Place the most important information at the beginning.

• Understand: users try to understand the content they have found

• In addition to definitions and descriptions, use examples

• Provide explanations of technical terms

• Be consistent in word usage and use common terms

• Speak the language of the user

• Pay attention to comprehensibility, structure the text well, for example, into small text

units, and provide the user with further information.

• Implement: users act according to the received information

• Make sure the information is up to date

• Show examples of use

• Explain the consequences of the application

• Support the inclusion of information in the current task processing.

• Determine: users check if their problems are solved

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 120 of 132

• Explain how the system will behave

• Provide descriptions of possible errors and troubleshooting instructions.

6.4 Documenting design decisions

Throughout the process of Designing Solutions, the designer makes design decisions and

defines the look and behaviour of the user interface. In the process, decisions are built on

previous decisions, be it for a stand-alone product or a product in a product family. The de-

signer has to decide whether or not it is necessary for the documentation of design deci-

sions to take an explicit approach and to go for a user interface specification or the an-

notation of user interfaces.

Learning Objectives

6.4.a Know that it is important to be able to formulate design decisions for discussion.

6.4.b Know forms of documentation.

 The need for documentation

As the first step, design decisions are made in an implicit form: The designer makes design

decisions and renders them tangible, for example, in a prototype. Thus, decisions are there

for everybody to see in the prototype, but reasons, arguments, and possible trade-offs in this

implicit form cannot be shared with or re-used by others.

Depending on the size of the design project, it might be necessary to document design deci-

sions for others to work with or to build on to.

Documentation of design decisions

Written or other stored information that allows the consistent implementation and the re-use

of successful design decisions or user interface elements.

Documentation of design decisions

• gives an overview of the existing design decisions and their contents (especially im-

portant for complex systems and/or platforms)

• comprehensively informs the team about the designed solution (especially important

when the team composition changes)

• helps third parties to build on existing design decisions (particularly important if different

teams work together or when agencies are commissioned

It is recommended to document design decisions, if

• it is legally required by standards (for example, for safety relevant systems according to

ISO 26262)

• there is more than one designer working on a product or product family and design deci-

sions are taken and reused by designers

• design decisions are supposed to be referred to for as long as the product life cycle, in

case design personnel change before the end of the product life cycle

• the interactive system shows considerable complexity and cannot be overseen by one

person

• the development model is waterfall-oriented (focuses on clear planning, strict processes,

and documentation) rather than agile (focuses on trial and error and fast iteration without

much documentation)

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 121 of 132

 Explicit approach

Explicit approach

An approach when designing user interfaces where important design decisions are explicitly

formulated or documented.

Design decisions are documented in the form of a user interface specification or annota-

tions of prototypes so that they can be traced, implemented, and reused by third parties

If documentation is required, an explicit approach has to be taken that makes design deci-

sions transparent, comprehensible, and sustainable. For an explicit approach in the docu-

mentation of design decisions, on top of making them visible in wireframes or prototypes, the

respective behaviour of the user interface needs to be explicitly formulated and explicitly doc-

umented in a comprehensible and reusable way.

Explicit formulation:

• The designer needs to be able to explicitly express reasons, arguments, and possible

trade-offs that lead to design decisions in discussions with team members and stakehold-

ers, in order to help acceptance and reuse of the decision.

Example of an explicit formulation and its reasoning:

“The send button for sending a message is always aligned on the right and shown twice,

at the beginning and the end of the message”.

This occupies precious screen real estate but it supports the user in instances where long

messages push one or the other send buttons out of view.

Explicit documentation:

• Design decisions are documented in such a specific way that they can be implemented or

applied repeatedly. One way to document design decisions is in the form of a user inter-

face specification.

User interface specification

A precise description of relevant design decisions and of all attributes of the user interface

of an interactive system. It can refer to design decisions for all design activities.

• As it provides the entirety of design decisions, it serves as a reference for the implemen-

tation of the user interface.

Another way to document design decisions is in the form of annotations (of prototypes).

 Types of documentation of design decisions

There are different ways to document design decisions; amongst them, is the annotation of

prototypes and specification of the user interface. Design patterns and style guides can also

be a form of documentation of design decisions. Designers should at least comment on the

prototypes with annotations.

It should be documented with annotations if

• quick iterations are possible,

• the complexity of the interactive system is not too high

Annotation

A note in the form of a commentary on a design decision, which is inserted directly, for ex-

ample, in a prototype.

• It may contain both specific formulations of the design decisions and explanations or

notes for implementation.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 122 of 132

• first solution approaches are developed in the early phases

• prototypes are created

• a continuous communication between design and development is possible.

Sometimes, however, it makes sense to document with specifications, especially if

• the interactive system has a complexity that cannot be overlooked by one person

• work products are handed over to service providers for further development

• an interdisciplinary, team-oriented participatory design is not possible.

The explicit documentation of design decisions may contribute to the development of design

systems for the implementation of interactive systems. A design system is a comprehensive

and complex documentation for the interactive systems of a company.

• It contains all the frontend components a team needs to design and develop a specific

product. This ensures consistent design within a product family.

• A design system contains, for example, general design guidelines, one or more pattern

libraries, as well as processes and code components.

• By explicitly documenting design decisions, the designer supports those who are respon-

sible for developing a design system.

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 123 of 132

Appendix 1: Overview of the CPUX-DS terms and activities
Learning units Terms

1. Important perspectives for design activities

1.1 The baseline for
Designing Solutions

Designing Solutions, context of use analysis, mental model,
conceptual model, system image

1.2 Overview on design activities Design activity, design decision, conceptual modelling, infor-
mation architecture, interaction design, interface design, in-
formation design, sensory design

1.3 Iterating as needed and as the
project demands

Iterative process, Design Darwinism, validation, formative
evaluation, user feedback

1.4 Considering the whole user experi-
ence across all touchpoints

Aesthetics of interaction, touchpoint, design thinking

2. Early design

2.1 Design of user interfaces for the
achievement of goals

Task object, executable function, signpost, task, action, user
interface, task-related operation, user assistance

2.2 Design activity:
conceptual modelling

Task model, user requirement, task model for design, dia-
logue step, interaction specification, use scenario, user jour-
ney map

3. First drafts

3.1 Design activity:
information architecture

Navigation structure, navigation system, navigation ele-
ments, card sorting, tree testing

3.2 Design activity: Interaction design Interaction sequence, view, user interface structure

3.3 Make design decisions tangible to
get feedback

Sketch, wireframe, wireflow, prototype, low-fidelity prototype,
high-fidelity prototype

4. Refined Design

4.1 Design activity: Interface design User interface element, responsive design, adaptive design,
mobile first

4.2 Design activity: Information design Principles for the presentation of information, information
reading, reading scheme, inverted pyramid approach

4.3 Design activity: Sensory design Gestalt laws, white space

5. Specific human needs

5.1 Accessibility Accessibility, disability, assistive technologies

5.2 Design ethics Persuasive design, honest interface, dark pattern, behaviour
pattern, nudge, interface metaphor, domain knowledge, illu-
sion of control, default,

5.3 Cultural diversity Intercultural user interface design, internationalisation, locali-
sation, intercultural usability testing

6. Aspects beyond the design activities

6.1 Managing stakeholders Consensual agreement, human-centred quality, human-cen-
tred quality objectives, avoidance of harm from user, partici-
patory design, customer journey map

6.2 Setting the frame for design work System of design recommendations, interaction principle
(formerly dialogue principle), heuristic, design pattern, user
interface guideline, style guide

6.3 Attending to implicit design tasks Implicit design task

6.4 Documenting design decisions Documentation of design decisions, explicit approach, user
interface specification, annotation

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 124 of 132

Figure 51 Design Process in Designing Solutions (Overview of CPUX-DS activities – alternative to Figure 2

Create task models for the design, interaction

specifications and use scenarios

Enrich task objects

by signposts

Select, arrange, combine and

define the behaviour of UI elements

Design meaningful information

comprehensibly and consistently

e.g. textual and visual content,

labels, symbols

Design the user interface

regarding its perception for

relevant sensory channels

EARLY
DESIGN

FIRST
DRAFTS

REFINED
DESIGN

Conceptual
Modelling

Information
Architecture

Interaction
DesignInterface

Design

Information
Design

Sensory
Design

Basis
deliverables from

context of use analysis,

e.g. personas, task

models and user

requirements

Design projects may include all or selected design activities. Which
design activity to start and end with depends on type and progress of
the design project.

iterate iterate

iterate

make the design tangible with low-fidelity

and high-fidelity prototypes

Define and visualise

interaction sequences using

sketches, wireframes and wireflows

Identify task objects, their attributes

and executable functions needed

per dialogue step

Make interaction specifications

tangible for communication

with users and stakeholders

Create the navigation

structure

Structure the user interface

and its required views

Structure task objects

by determining

connection Paths

Consider dependencies and

create variations

Make the information

architecture visible for

evaluation

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 125 of 132

Appendix 2: Model Seminar

Day 1 “Designing Solutions: Introduction, Process, Early Design” (360 min)

Timetable Contents Ideas for exercises (* = mandatory)

09:00 – 10:30

Check-in and General Introduction to the course

Introduction to Designing Solutions I

• Orientation: Designing Solutions regarding HCD (ISO 9241-210)

• The baseline for Designing Solutions

• Design activities in Designing Solutions (the process)

• Iterating as needed and as the project demands

• Discuss examples for user problems based on un-

fulfilled user requirements (through design)

• Classify deliverables in design activities

• Discuss examples for iterations in different project

situations

10:45 – 11:30
Introduction to Designing Solutions II

• Considering the whole user experience

• Find examples of human needs relevant to design

• Find (real) examples for aesthetic interactions

11:30 – 12:15

Design of user interfaces for the achievement of goals I

• Task-related operation to achieve user goals

• How to understand the figure “Task-related Opera-

tion and components of an interactive system”

• Identify task objects, attributes, executable func-

tions, and signposts in a given screen flow.

13:15 – 14:00

Design of user interfaces for the achievement of goals II

• User assistance: explicit action guiding information

• Intended and undesirable consequences of user interface design

• Identify explicit action-guiding information in the

given screen flow

• Assess examples regarding intended and undesir-

able consequences of UI design

13:15 – 16:30

incl. 15 min

break

Design activity: Conceptual modelling

• Creating task models for design

• Creating interaction specifications based on task models for design

• Identifying task objects, attributes, and executable functions in inter-

action specifications

• Considering dependencies and creating variations

• Communicating use scenarios to users and stakeholders

• Create an interaction specification for one task in

small working groups (step-by-step: adapt a task

model for design, create an interaction specifica-

tion, identify task objects, executable functions

and attributes) *

• Discuss participants’ experiences in every step

16:30 – 17:00
Introduction to the examination regulations

• Process, assessment, documents

• Homework: “five questions you should be able to

answer”

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 126 of 132

Day 2 “Designing Solutions: First Drafts” (360min)

Timetable Contents Ideas for exercises (* = mandatory)

09:00 – 09:45

Looking back, open questions and agenda for today

• Discussing the homework

• Question and answers

• First Drafts: Overview

• Open discussion of answers and further questions

of the participants

09:45 – 10:30

Design activity: Information architecture I

• Development of an information architecture

• Enhance task objects with signposts

• Discussing examples of different user interfaces re-

garding their information architecture and uncover-

ing the elements of information architecture

10:45 – 12:15

Design activity: Information architecture II

• Structure task objects by determining connection paths

• Make the information architecture visible for evaluation

• Create the navigation structure using connection paths and sign-

posts

• Structure and visualise task objects with one se-

lected method, using the example of the interaction

specification *

13:15 – 14:15

Design activity: Information architecture III

• Evaluate the information architecture

• Small group task: Card Sorting with prepared cards

in accordance with the previous exercise

• Discuss consequences of the results for the infor-

mation architecture *

14:30 – 15:15

Design activity: Interaction design

• Define task-related Interaction sequences

• Visualise interaction sequences

• Structure the user interface based on all required views

• Assess visualised interaction sequences from a

task-oriented user perspective *

15:30 – 17:00

Make design decisions tangible to get feedback

• Characteristics of visualisations across design phases and typical

types of visualisations

• Benefits of visualising design decisions and iterating visualisations

• Iterating visualisations through evaluation

• Guidelines for creating low-fidelity prototypes

• Criteria for selecting prototyping tools

• Small group task: Prototyping with a number of

sketches showing task-related interaction se-

quences (using the results of the prior example –

the same example that was used for the interaction

specification, the information architecture and card

sorting) *

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 127 of 132

Day 3 “Refined Design, Specific Human Needs & Design Projects and Aspects beyond Design Activities” (360min)

Timetable Contents Exercises

09:00 – 09:30 Looking back, open questions and agenda for today

09:30 – 10:30

Design activity: Interface design

• Create the interface design by selecting, arranging, combining,

and defining the behaviour of user interface elements

• Appropriate use of user interface elements

• Exercise about the correct use of UI elements

10:45 – 11:35

Design activity: Information design

• Principles for the presentation of information

• Information reading and comprehensibility of content

• Specific design recommendations for comprehensibility

• Exercise about interpretation & misinterpretation of

information

11:40 – 12:30

Design activity: Sensory design

• Design the user interface regarding its perception through relevant

sensory channels

• Gestalt laws

• Colours, font sizes, and white space

• Experiencing and discussing examples related to

perception

13:30 – 15:00

Specific human needs

• Accessibility

• Design ethics

• Cultural diversity

• Discussing positive and negative examples for the

consequences of considering or not considering ac-

cessibility

15:15 – 16:45

Aspects beyond the design activities

• Managing stakeholders

• Setting the frame for design work

• Attending to implicit design tasks

• Documenting design decisions

• Discuss the quality objectives of stakeholders

• Discuss experiences from small groups working in

the course and their consequences for working with

teams and stakeholders

• Exercise about the application of heuristics *

• Assess positive/negative examples for designing

search and help

• Discuss forms of documentation

16:45 – 17:00 Course feedback & evaluation • UXQB feedback form

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 128 of 132

Appendix 3: Important changes to this document
Date, Version Changes compared to version

31 January, version 1.01 • linguistic correction

• implementation of editorial changes based on feed-

back from the German version rolled out in October

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 129 of 132

Appendix 4: References & Index

[BrAA2013] L. Brandimarte, I. Adjerid, A. Acquisti: Gone in 15 Seconds: The Limits of Pri-

vacy Transparency and Control. IEEE Security & Privacy, 11 (4), 2013.

[Brig2011] H. Brignull: Dark Patterns: Deception vs. Honesty in UI Design.

https://alistapart.com/article/dark-patterns-deception-vs.-honesty-in-ui-design,

2011, last visited March 2019.

[Brig2013] H. Brignull: Dark Patterns: Inside the interfaces designed to trick you.

http://www.theverge.com/2013/8/29/4640308/dark-patterns-inside-the-inter-

faces-designed-to-trick-you, 2013, last visited February 2019.

[Buxt2007] B. Buxton: Sketching User Experiences. Getting the design right and the right

design. Morgan Kaufmann, Burlington, 2007.

[CaRo2014] J. M. Carroll, M. B. Rosson: Getting around the Task-Artiface Cycle: How to

Make Claims and Design by Scenario. IBM Watson Research Center. ACM

Transactions on Information Systems, Vol. 10. No. 2, 2014.

 [EFPA2005] European Federation of Psychologists’ Associations: Meta-Code of Ethics.

http://ethics.efpa.eu/metaand-model-code/meta-code, 2005, last visited March

2019.

[Garr2010] J. Garrett: The Elements of User Experience: User-Centered Design for the

Web and Beyond (Voices That Matter). 2nd Edition, New Riders, Indianapolis,

2010.

[GePo2016]] T. Geis, K. Polkehn: Customer Experience, User Experience – and the Busi-

ness Analyst. UXQB (International Qualification Board for Usability and User

Experience) & IIBA (International Institute of Business Analysis),

https://www.gartner.com/imagesrv/media-products/pdf/iiba/customer-exp.pdf,

2016. last visited May 2020.

[GePo2018] T. Geis, K. Polkehn: Praxiswissen User Requirements: Nutzungsqualität sys-

tematisch, nachhaltig und agil in die Produktentwicklung integrieren.

dpunkt.verlag, Heidelberg, 2018

[GeTe2018] T. Geis, G. Tesch: Basiswissen: Usability und User Experience. Systematisch

und strukturiert vom Nutzungskontext zum gebrauchstauglichen Produkt.

dpunkt.verlag, Heidelberg, 2018.

[HaPy2019] R. Hartson, P. Pyla: The UX Book. Process and guidelines for ensuring a

quality user experience. Morgan Kaufmann, Burlington, 2019.

[HaDi2017] M. Hassenzahl, S. Diefenbach: Psychologie in der nutzerzentrierten Produkt-

gestaltung: Mensch-Technik-Interaktion-Erlebnis. Springer, Berlin, 2017.

[Hall2018] E. Hall: Conversational Design. A Book Apart, New York, 2018.

[Heim2019] R. Heimgärtner: Intercultural User Interface Design. Springer International

Publishing Springer, Basel, 2019.

[ISO9241-171] ISO 9241-171:2008. Ergonomics of human-system interaction – part 171:

Guidance on software accessibility, Geneva, 2008.

[ISO9241-210] ISO 9241-210:2019. Ergonomics of human-system interaction – Part 210:

Human-centred design for interactive systems, Geneva, 2019.

[ISO9241-110] ISO 9241-110:2020. Ergonomics of human-system interaction – Part 110: In-

teraction principles, Geneva, 2020.

https://alistapart.com/article/dark-patterns-deception-vs.-honesty-in-ui-design
http://www.theverge.com/2013/8/29/4640308/dark-patterns-inside-the-interfaces-designed-to-trick-you
http://www.theverge.com/2013/8/29/4640308/dark-patterns-inside-the-interfaces-designed-to-trick-you
http://ethics.efpa.eu/metaand-model-code/meta-code
https://www.gartner.com/imagesrv/media-products/pdf/iiba/customer-exp.pdf

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 130 of 132

[ISO9241-112] ISO 9241-112:2017. Ergonomics of human-system interaction – Part 112:

Principles for the presentation of information, Geneva, 2017.

[ISO9241-125] ISO 9241-125:2017. Ergonomics of human-system interaction – Part 125:

Guidance on visual presentation of information, 2017.

[ISO9241-161] ISO 9241-1161:2016. Ergonomics of human-system interaction – Part 161:

Guidance on visual user-interface elements, 2016.

[JaMe2017] J. Jacobsen, L. Meyer: Praxisbuch Usability und UX. Rheinwerk Verlag, Bonn,

2017.

[John2014] J. Johnson: Designing with the Mind in Mind: Simple Guideline to Understand-

ing User Interface Design Guidelines. Morgan Kaufmann, Burlington, 2014.

[JoMa2017] T. Jokinen, M. Marwede: Use – User and environment friendly products: pre-

serve and extend what is already made. https://sustainabil-

ityguide.eu/ecodesign/use/, 2017, last visited February 2019.

[Kalb2007] J. Kalbach: Designing Web Navigation. O’Reilly Media, Sebastopol, 2007.

[KaLi2012] J. Kalbach, K. Lindemann (2012): Designing Screens Using Cores and Paths.

https://boxesandarrows.com/designing-screens-using-cores-and-paths/, 2012,

last visited June 2020.

[Knap2016] J. Knapp: Sprint – Wie man in nur fünf Tagen neue Ideen testet und Probleme

löst. Redline Verlag, München, 2016.

[LeDH2014] E. Lenz, S. Diefenbach, M. Hassenzahl: Aesthetics of Interaction – A Litera-

ture Synthesis. https://www.researchgate.net/publication/267729174_Aesthet-

ics_of_Interaction_-_A_Literature_Synthesis, 2014, last visited February 2019.

[Mayh1999] D. J. Mayhew: The Usability Engineering Lifecycle: A Practitioner’s Handbook

for User Interface Design. Morgan Kaufmann, San Francisco, 1999

[McGo2018] G. McGovern: Top Task: A How-to Guide. Silver Beach, Gormanston, Meath,

2018.

[Mose2012] C. Moser: User Experience Design: Mit erlebniszentrierter Softwareentwick-

lung zu Produkten, die begeistern. Springer Verlag, Berlin Heidelberg, 2012.

[Niel1993] J. Nielsen: Usability Engineering. Academic Press, London, 2013.

[NiLo2006] J. Nielsen, H. Loranger: Prioritizing Web Usability, New Riders Publishing,

California, 2006.

[Norm2013] D. Norman: The Design of Everyday Things. Basic Books, New York, 2013.

[Pern2017] K. Pernice: F-Shaped Pattern of Reading on the Web: Misunderstood, But Still

Relevant Even on Mobile, https://www.nngroup.com/articles/f-shaped-pattern-

reading-web-content/, 2017, last visited April 2019.

[RoCa2002] M. Rosson, J. Carroll: Usability Engineering: Scenario-Based Development of

Human-Computer Interaction, Morgan Kaufmann, Burlington, 2002.

[RoMA2015] L. Rosenfeld, P. Morville, J. Arango: Information Architecture for the World

Wide Web: For the Web and Beyond, O'Reilly UK Ltd., Sebastopol, 2015.

[Scha2018] A. Schade: Inverted Pyramid: Writing for Comprehension.

https://www.nngroup.com/articles/inverted-pyramid/, 2018, last visited April

2019.

[ShPl2009] B. Shneiderman, C. Plaisant: Designing the User Interface: Strategies for Ef-

fective Human-Computer Interaction. Pearson, Boston, 2009.

https://sustainabilityguide.eu/ecodesign/use/
https://sustainabilityguide.eu/ecodesign/use/
https://boxesandarrows.com/designing-screens-using-cores-and-paths/
https://www.researchgate.net/publication/267729174_Aesthetics_of_Interaction_-_A_Literature_Synthesis
https://www.researchgate.net/publication/267729174_Aesthetics_of_Interaction_-_A_Literature_Synthesis
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
https://www.nngroup.com/articles/inverted-pyramid/

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 131 of 132

[Spil2011] F. Spillers: Is your design Evolutionary or Revolutionary? https://www.experi-

encedynamics.com/blog/2011/03/your-design-evolutionary-or-revolutionary,

2011, last visited February 2019.

[Spre2018] P. Spreer: PsyConversion. 101 Behaviour Pattern für eine bessere User Expe-

rience und höhere Conversion-Rate im E-Commerce. 2018, Springer Gabler,

Wiesbaden.

[Stre2018] R. Strebe: Aufschlussreiche Irrwege – Auswertung von Tree Testing

https://www.usabilityblog.de/aufschlussreiche-irrwege-auswertung-von-tree-

testing/, 2018, last visited March 2019.

[StJW2005] D. Stone, C. Jarrett, M. Woodroffe, S. Minocha: User Interface Design and

Evaluation. Morgan Kaufmann, San Fracisco, 2005.

[ThSu2008] R. H. Thaler, C. R. Sunstein: Nudge. Improving Decisions About Health,

Wealth, and Happiness. Yale University Press, New Haven & London, 2008.

[Tidw2011] J. Tidwell: Designing Interfaces. O’Reilly, Sebastopol, 2011.

[Trav2009] D. Travis: List of search usability guidelines. https://www.userfocus.co.uk/re-

sources/searchchecklist.html, 2009, last visited March 2019.

[UXQB2020] UXQB e.V.: CPUX-UT Curriculum – Certified Professional for Usability and

User Experience – Usability Testing and Evaluation. https://uxqb.org/wp-con-

tent/uploads/documents/CPUX-UT_EN_Curriculum.pdf, 2020, last visited Au-

gust 2020.

[Ware2004] C. Ware: Information Visualization: Perception for Design, Morgan Kaufmann,

Burlington, 2004.

[Wood2007] L. E. Wood: User Interface Design: Bridging the Gap from User Requirements

to Design. Taylor and Francis Books, 2007.

[Wrig1983] P. Wright: Manual Dexterity — A User-Oriented Approach to Creating Com-

puter Documentation, 1983.

https://www.experiencedynamics.com/blog/2011/03/your-design-evolutionary-or-revolutionary
https://www.experiencedynamics.com/blog/2011/03/your-design-evolutionary-or-revolutionary
https://www.usabilityblog.de/aufschlussreiche-irrwege-auswertung-von-tree-testing/
https://www.usabilityblog.de/aufschlussreiche-irrwege-auswertung-von-tree-testing/
https://www.userfocus.co.uk/resources/searchchecklist.html
https://www.userfocus.co.uk/resources/searchchecklist.html
https://uxqb.org/wp-content/uploads/documents/CPUX-UT_EN_Curriculum.pdf
https://uxqb.org/wp-content/uploads/documents/CPUX-UT_EN_Curriculum.pdf

CPUX-DS Curriculum and Glossary

Copyright 2020, UXQB e. V. Page 132 of 132

Index

Accessibility 96

Action 32

Adaptive design 80

Aesthetics of interaction

27

Annotation 122

Assistive technology 97

Avoidance of harm from

use 109

Behaviour pattern 101

Card sorting 66

Conceptual model 10

Conceptual Modelling 13

Consensual agreement

108

Context of use analysis 9

Customer journey map

111

Dark pattern 100

Default 102

Design Activity 12

Design darwinism 21

Design decision 13

Design pattern 116

Design thinking 28

Designing Solutions 9

Dialogue step 41

Disability 96

Documentation of design

decisions 121

Domain knowledge 102

Executable function 31

Explicit approach 122

Formative evaluation 22

Gestalt laws 91

Heuristic 115

High-Fidelity Prototype

74

Honest interface 100

Human-centred quality

108

Human-centred quality

objectives 109

Illusion of control 102

Implicit design task 119

Information architecture

16

Information design 20

Interaction design 18

Interaction principle 113

Interaction sequence 68

Interaction specification

41

Intercultural usability

testing 106

Intercultural user

interface design 104

Interface design 19

Interface metaphor 101

Internationalisation 105

Inverted pyramid

approach 87

Iterative process 21

Localisation 105

Low-Fidelity Prototype

74

Mental model 10

Mobile first 81

Navigation elements 65

Navigation structure 62

Navigation system 62

Nudge 101

Participatory design 110

Persuasive design 99

Principles for the

presentation of

information 84

Prototype 73

Reading scheme 86

Responsive design 80

Sensory design 20

Signpost 31

Sketch 72

Style guide 117

System image 10

System of design

recommendations 112

Task 32

Task model 37

Task model for the design

38

Task object 31

Task-related operation

34

Touchpoint 28

Tree testing 67

Use scenario 50

User assistance 35

User feedback 23

User interface 34

User interface element

79

User interface guideline

117

User interface

specification 122

User interface structure

70

User journey map 50

User requirements 38

Validation 22

View 68

White space 94

Wireflow 73

Wireframe 73

	Preliminary notes
	1 Important perspectives for design activities
	1.1 The baseline for Designing Solutions
	1.2 Overview of design activities
	1.2.1 Early design: conceptual modelling
	1.2.1.1 Create task models for the design, interaction specifications, and use scenarios
	1.2.1.2 Identify task objects, their attributes, and executable functions needed per dialogue step
	1.2.1.3 Consider dependencies and create variations
	1.2.1.4 Make interaction specifications tangible for communication with users and stakeholders

	1.2.2 First drafts: information architecture and interaction design
	1.2.2.1 Enhance task objects with signposts
	1.2.2.2 Structure task objects by determining connection paths
	1.2.2.3 Make the information architecture visible for evaluation
	1.2.2.4 Create the navigation structure
	1.2.2.5 Define and visualise interaction sequences with sketches, wireframes, and wireflows
	1.2.2.6 Structure the user interface and its required views
	1.2.2.7 Make the design tangible with low-fidelity and high-fidelity prototypes

	1.2.3 Refined design: interface design, information design, and sensory design
	1.2.3.1 Select, arrange, combine and define the behaviour of UI elements
	1.2.3.2 Design meaningful information comprehensibly and consistently
	1.2.3.3 Design the UI regarding its perception across relevant sensory channels

	1.3 Iterating as needed and as the project demands
	1.3.1 Iterate design decisions
	1.3.2 Create alternatives to make a selection
	1.3.3 Evaluating continuously in a formative way
	1.3.4 Decide how to iterate in the project

	1.4 Considering the whole user experience across all touchpoints
	1.4.1 Reflecting psychological needs
	1.4.2 Designing aesthetic interaction
	1.4.3 Considering whole ecosystems

	2 Early design
	2.1 Design of user interfaces for the achievement of goals
	2.1.1 Task-related operation to achieve user goals
	2.1.1.1 Create, modify, and gather information about task objects
	2.1.1.2 Interaction of user and interactive system for the achievement of goals
	2.1.1.3 User interfaces for the achievement of goals

	2.1.2 User assistance: Explicit action-guiding information in addition to task objects and executable functions
	2.1.3 Intended and unintended consequences of user interface design

	2.2 Design activity: conceptual modelling
	2.2.1 Creating task models for design
	2.2.2 Creating interaction specifications based on task models
	2.2.3 Identifying task objects, attributes, and executable functions in interaction specifications
	2.2.4 Considering dependencies and creating variations
	2.2.5 Communicating use scenarios to users and stakeholders

	3 First drafts
	3.1 Design activity: information architecture
	3.1.1 Development of the information architecture
	3.1.2 Enhance task objects with signposts
	3.1.3 Structure task objects by determining connection paths
	3.1.4 Make the information architecture visible for evaluation
	3.1.5 Create the navigation structure using connection paths and signposts
	3.1.5.1 Develop the navigation structure
	3.1.5.2 Navigation systems to implement a navigation structure
	3.1.5.3 Structure types for navigation within content
	3.1.5.4 Navigation elements as part of a navigation system

	3.1.6 Evaluate the information architecture
	3.1.6.1 Card sorting
	3.1.6.2 Tree testing

	3.2 Design activity: Interaction design
	3.2.1 Define task-related interaction sequences
	3.2.2 Visualise interaction sequences
	3.2.3 Structure the user interface based on all required views

	3.3 Make design decisions tangible to get feedback
	3.3.1 Characteristics of visualisations across design phases
	3.3.2 Typical types of visualisations
	3.3.3 Benefits of visualising design decisions early and continuously
	3.3.4 Iterating visualisations through evaluation
	3.3.5 Guidelines for creating low-fidelity prototypes
	3.3.6 Criteria for selecting prototyping tools

	4 Refined design
	4.1 Design activity: Interface design
	4.1.1 Create the interface design by selecting, arranging, combining, and defining the behaviour of user interface elements
	4.1.1.1 Select, arrange, and combine user interface elements
	4.1.1.2 Decide on the dynamic or static arrangement of user interface elements

	4.1.2 Appropriate use of user interface elements

	4.2 Design activity: Information design
	4.2.1 Principles for the presentation of information
	4.2.2 Information reading and comprehensibility of content
	4.2.2.1 Step-by-step reading of information
	4.2.2.2 Supporting reading of information for digital content
	4.2.2.3 Ensuring the comprehensibility of text with the rules of simple language
	4.2.2.4 Ensuring the comprehensibility of information through colours
	4.2.2.5 Special features of language and images in terms of comprehensibility

	4.2.3 Specific design recommendations for comprehensibility
	4.2.3.1 Structuring information sets
	4.2.3.2 Providing consistency
	4.2.3.3 The Use of real-world metaphors to support comprehensibility
	4.2.3.4 Using images that relate to the specific situation of use

	4.3 Design activity: Sensory design
	4.3.1 Design the user interface regarding its perception through relevant sensory channels
	4.3.2 Gestalt laws
	4.3.3 Colours, font sizes, and white space

	5 Specific human needs
	5.1 Accessibility
	5.1.1 The importance of accessible design
	5.1.2 Assistive technologies
	5.1.3 Laws, standards and guidelines for accessible design

	5.2 Design ethics
	5.2.1 Influence by design and ethical consequences
	5.2.2 Use of nudges as design elements of influence
	5.2.3 Typical forms of nudges
	5.2.4 Responsible design by applying common ethical standards

	5.3 Cultural diversity
	5.3.1 Intercultural user interface design (IUID)
	5.3.2 Methods for interculturalisation (IUID process)
	5.3.2.1 Intercultural user interface design according to cultural contexts of use
	5.3.2.2 Concept of internationalisation (I18N)
	5.3.2.3 Concept of localisation (L10N)
	5.3.2.4 Intercultural evaluation and agreement

	6 Aspects beyond the design activities
	6.1 Managing stakeholders
	6.1.1 Setting quality objectives for the project
	6.1.1.1 Human-centred quality objectives

	6.1.2 Agreement on user feedback
	6.1.3 Involve stakeholders

	6.2 Setting the frame for design work
	6.2.1 Deciding on the design process and methods
	6.2.2 Deciding on appropriate systems of design recommendations to be used
	6.2.2.1 General design recommendations
	6.2.2.2 Sample solutions for typical design problems
	6.2.2.3 User interface guidelines

	6.3 Attending to implicit design tasks
	6.3.1 Search
	6.3.2 Help and documentation

	6.4 Documenting design decisions
	6.4.1 The need for documentation
	6.4.2 Explicit approach
	6.4.3 Types of documentation of design decisions

	Appendix 1: Overview of the CPUX-DS terms and activities
	Appendix 2: Model Seminar
	Appendix 3: Important changes to this document
	Appendix 4: References & Index

